Question
Question: If the two curves \(y = a^{x}\) and \(y = b^{x}\) intersect at \(\alpha\), then \(\tan\alpha\) Equa...
If the two curves y=ax and y=bx intersect at α, then tanα
Equal
A
1+logalogbloga−logb
B
1−logalogbloga+logb
C
1−logalogbloga−logb
D
None of these
Answer
1+logalogbloga−logb
Explanation
Solution
Clearly the point of intersection of curves is (0, 1)
Now, slope of tangent of first curve, m1=dxdy=axloga
⇒ (dxdy)(0,1)=m1=loga
Slope of tangent of second curve, m2=dxdy=bxlogb
⇒ m2=(dxdy)(0,1)=logb
∴ tanα=1+m1m2m1−m2=1+logalogbloga−logb.