Solveeit Logo

Question

Question: If the two curves \(y = a^{x}\) and \(y = b^{x}\) intersect at \(\alpha\), then \(\tan\alpha\) Equa...

If the two curves y=axy = a^{x} and y=bxy = b^{x} intersect at α\alpha, then tanα\tan\alpha

Equal

A

logalogb1+logalogb\frac{\log a - \log b}{1 + \log a\log b}

B

loga+logb1logalogb\frac{\log a + \log b}{1 - \log a\log b}

C

logalogb1logalogb\frac{\log a - \log b}{1 - \log a\log b}

D

None of these

Answer

logalogb1+logalogb\frac{\log a - \log b}{1 + \log a\log b}

Explanation

Solution

Clearly the point of intersection of curves is (0, 1)

Now, slope of tangent of first curve, m1=dydx=axlogam_{1} = \frac{dy}{dx} = a^{x}\log a

(dydx)(0,1)=m1=loga\left( \frac{dy}{dx} \right)_{(0,1)} = m_{1} = \log a

Slope of tangent of second curve, m2=dydx=bxlogbm_{2} = \frac{dy}{dx} = b^{x}\log b

m2=(dydx)(0,1)=logbm_{2} = \left( \frac{dy}{dx} \right)_{(0,1)} = \log b

\therefore tanα=m1m21+m1m2=logalogb1+logalogb\tan\alpha = \frac{m_{1} - m_{2}}{1 + m_{1}m_{2}} = \frac{\log a - \log b}{1 + \log a\log b}.