Question
Question: If the trivial solution is the only solution to the system of equations \( x - ky + z = 0 \\\...
If the trivial solution is the only solution to the system of equations
x−ky+z=0 kx+3y−kz=0 3x+y−z=0
Then the set of all values of k is:
A) \left\\{ {2, - 3} \right\\}
B) R - \left\\{ {2, - 3} \right\\}
C) R - \left\\{ 2 \right\\}
D) R - \left\\{ { - 3} \right\\}
Solution
If a system of homogeneous equations has a trivial solution then the determinant of coefficients of x, y and z of the equations taken row-wise is equal to zero.
Proceeding to this we’ll obtain an equation in ‘k’. solving for ‘k’ we will obtain the required values of k.
Complete step by step solution:
Given: the system of equations having a trivial solution,
x−ky+z=0 kx+3y−kz=0 3x+y−z=0
It is well known that, if the system of homogeneous equations say
a1x+b1y+c1z=0 a2x+b2y+c2z=0 a3x+b3y+c3z=0
Have only a trivial solution then, it is said that
\left| {\begin{array}{*{20}{c}}
1&{ - k}&1 \\
k&3&{ - k} \\
3&1&{ - 1}
\end{array}} \right| = 0 \\
\Rightarrow 1( - 3 + k) + k( - k + 3k) + 1(k - 9) = 0 \\
\Rightarrow k - 3 + k(2k) + k - 9 = 0 \\
\Rightarrow 2k - 12 + 2{k^2} = 0 \\
\Rightarrow 2{k^2} + 2k - 12 = 0 \\
{k^2} + k - 6 = 0 \\
\Rightarrow {k^2} + (3 - 2)k - 6 = 0 \\
\Rightarrow {k^2} + 3k - 2k - 6 = 0 \\
\Rightarrow k(k + 3) - 2(k + 3) = 0 \\
(k + 3)(k - 2) = 0 \\
i.e.{\text{ }}k + 3 = 0{\text{ }}or{\text{ }}k - 2 = 0 \\
\therefore k = - 3{\text{ }}or{\text{ }}k = 2 \\
\left| {\begin{array}{*{20}{c}}
1&{ - k}&1 \\
k&3&{ - k} \\
3&1&{ - 1}
\end{array}} \right| = 0 \\
\Rightarrow 1( - 3 + k) - k(k - 1) + 3({k^2} - 3) = 0 \\
\Rightarrow k - 3 - {k^2} + k + 3{k^2} - 9 = 0 \\
\Rightarrow 2k - 12 + 2{k^2} = 0 \\
\Rightarrow 2{k^2} + 2k - 12 = 0 \\
{k^2} + k - 6 = 0 \\
\Rightarrow {k^2} + (3 - 2)k - 6 = 0 \\
\Rightarrow {k^2} + 3k - 2k - 6 = 0 \\
\Rightarrow k(k + 3) - 2(k + 3) = 0 \\
(k + 3)(k - 2) = 0 \\
i.e.{\text{ }}k + 3 = 0{\text{ }}or{\text{ }}k - 2 = 0 \\
\therefore k = - 3{\text{ }}or{\text{ }}k = 2 \\