Solveeit Logo

Question

Mathematics Question on Determinants

If the trivial solution is the only solution of the system of equations xky+z=0x - ky + z = 0 kx+3ykz=0kx + 3y - kz = 0 3x+yz=03x +y - z = 0 then the set of all values of k is :

A

R -{2,-3}

B

R -{2}

C

R -{-3}

D

{2,-3}

Answer

R -{2,-3}

Explanation

Solution

xky+z=0x - ky + z = 0 kx+3ykz=0kx + 3y - kz = 0 3x+yz=03x +y - z = 0 The given system of equations will have non trivial solution, if 1k1 k3k 311=0\begin{vmatrix}1&-k&1\\\ k&3&-k\\\ 3&1&-1\end{vmatrix} = 0  1(3+k)+k(k+3k)+1(k9)=0\Rightarrow \ 1(-3 + k )+ k (-k + 3k )+1(k - 9) = 0  k3+2k2+k9=0\Rightarrow \ k - 3+ 2k^2 + k - 9 = 0  k2+k6=0\Rightarrow \ k^2 + k - 6 = 0  k=3,k=2\Rightarrow \ k = -3, k = 2 So the equation will have only trivial solution, when kR2,3k \in R - \\{2, - 3\\}