Solveeit Logo

Question

Question: If the trigonometric ratios \[\cos A,\sin A,\cot A\] are in GP then \[{{\tan }^{6}}A-{{\tan }^{2}}A=...

If the trigonometric ratios cosA,sinA,cotA\cos A,\sin A,\cot A are in GP then tan6Atan2A={{\tan }^{6}}A-{{\tan }^{2}}A=

A. -1

B. 0

C. 1

D. 2

Explanation

Solution

We know that when three numbers a,b,ca,b,c are in GP then b2=ac{{b}^{2}}=ac and we have to know the basic trigonometric identity that is sec2Atan2A=1{{\sec }^{2}}A-{{\tan }^{2}}A=1. In the above we only have sin2A=cosA×cotA{{\sin }^{2}}A=\cos A\times \cot A then we will get tan2A=cosecA{{\tan }^{2}}A=\cos ecA by dividing the above term with cos2A{{\cos }^{2}}A and proceed using trigonometric formulas.

Complete step-by-step solution:

Given cosA,sinA,cotA\cos A,\sin A,\cot A are in GP

We know that if three numbers a,b,ca,b,c are in GP then b2=ac{{b}^{2}}=ac

So by applying the formulae we will get

sin2A=cosA×cotA{{\sin }^{2}}A=\cos A\times \cot A. . . . . . . . . . . . . . (1)

Dividing with cos2A{{\cos }^{2}}A on both the left hand side and right hand side we will get,

sin2Acos2A=cosA×cotAcos2A\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}=\dfrac{\cos A\times \cot A}{{{\cos }^{2}}A}

tan2A=cosecA{{\tan }^{2}}A=\cos ecA. . . . . . . . . . . . . . . . . . .(2)

Now multiply with tanA\tan A on both left hand side and right hand side then we will get

tan2A×tanA=cosecA×tanA{{\tan }^{2}}A\times \tan A=\cos ecA\times \tan A

We know that the tanA\tan A is the ratio of sinA\sin A to the cosA\cos A. By applying that formula we will get

tan3A=cosecA×sinAcosA{{\tan }^{3}}A=\cos ecA\times \dfrac{\sin A}{\cos A}

tan3A=secA{{\tan }^{3}}A=\sec A. . . . . . . . . . . . . . . . . . . . . . (3)

Now squaring on both left hand side and right hand side we will get

(tan3A)2=sec2A{{\left( {{\tan }^{3}}A \right)}^{2}}={{\sec }^{2}}A

tan6A=sec2A{{\tan }^{6}}A={{\sec }^{2}}A. . . . . . . . . . . . . . . . . . . . (4)

We want to know the value of tan6Atan2A{{\tan }^{6}}A-{{\tan }^{2}}A, So subtract tan2A{{\tan }^{2}}A, from both the sides.

tan6Atan2A=sec2Atan2A{{\tan }^{6}}A-{{\tan }^{2}}A={{\sec }^{2}}A-{{\tan }^{2}}A

We know the trigonometric identity that sec2Atan2A=1{{\sec }^{2}}A-{{\tan }^{2}}A=1

So, tan6Atan2A=1{{\tan }^{6}}A-{{\tan }^{2}}A=1

So, the correct option for above question is option (C).

Note: We have to know the basic trigonometric formulas that are tanA=sinAcosA\tan A=\dfrac{\sin A}{\cos A} and cotA=cosAsinA\cot A=\dfrac{\cos A}{\sin A} and the product of sinA\sin A and cosecA\cos ecA is 1 because they are reciprocal to each other. In general the given numbers are said to be in GP if the ratio of second term to first term and ratio of third term to the second term is the same which is called the common ratio and denoted by “r”.