Solveeit Logo

Question

Question: If the trigonometric identity \(\cos A=\dfrac{\sqrt{3}}{2}\) , then find the value of \(\tan 3A=?\)...

If the trigonometric identity cosA=32\cos A=\dfrac{\sqrt{3}}{2} , then find the value of tan3A=?\tan 3A=?

Explanation

Solution

Hint: We know the value of cosA\cos A, find value of cos3A\cos 3A using formula cos3A=4cos3A3cosA\cos 3A=4{{\cos }^{3}}A-3\cos A.
Then find sin3A\sin 3A using identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1, next find the value of tan3A\tan 3A which is equal to sin3Acos3A\dfrac{\sin 3A}{\cos 3A} .

Complete step-by-step answer:
In the question we are given the value of cosA=32.\cos A=\dfrac{\sqrt{3}}{2}.
As we know the value of cosA\cos A, now we will find out the value of cos3A\cos 3A, let 3A = 2A + A, so we get
cos3A=cos(2A+A)\cos 3A=\cos \left( 2A+A \right)
Now by applying the identity, cos(A+B)=cosAcosBsinAsinB\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B the above expression can be written as,
cos(3A)=cos2AcosAsin2AsinA\cos \left( 3A \right)=\cos 2A\operatorname{cosA}-\sin 2A\sin A
Now we will use the identity, cos2A=2cos2A1,sin2A=2sincosA\cos 2A=2{{\cos }^{2}}A-1,\sin 2A=2\sin \cos A so above expression can be written as,
cos(3A)=(2cos2A1)cosA2sin2AcosA\cos \left( 3A \right)=\left( 2{{\cos }^{2}}A-1 \right)\cos A-2{{\sin }^{2}}A\cos A
Using the identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 ,we can write sin2A{{\sin }^{2}}A as (1cos2A)\left( 1-{{\cos }^{2}}A \right)
By substituting in above expression
cos(3A)=(2cos2A1)cosA2cosA(1cos2A)\cos \left( 3A \right)=\left( 2{{\cos }^{2}}A-1 \right)\cos A-2\cos A\left( 1-{{\cos }^{2}}A \right)
Now opening the brackets, the above equation can be written as,
cos3A=2cos3AcosA2cosA+2cos3A cos3A=4cos3A3cosA \begin{aligned} & \cos 3A=2{{\cos }^{3}}A-\cos A-2\cos A+2{{\cos }^{3}}A \\\ & \Rightarrow \cos 3A=4{{\cos }^{3}}A-3\cos A \\\ \end{aligned}
Now substituting the given value cosA=32\cos A=\dfrac{\sqrt{3}}{2}, the above expression can be written as,
cos3A=4(32)33×32 cos3A=(332)332=0........(i) \begin{aligned} & \cos 3A=4{{\left( \dfrac{\sqrt{3}}{2} \right)}^{3}}-3\times \dfrac{\sqrt{3}}{2} \\\ & \cos 3A=\left( \dfrac{3\sqrt{3}}{2} \right)-\dfrac{3\sqrt{3}}{2}=0........(i) \\\ \end{aligned}
Now we know,
tan3A=sin3Acos3A\tan 3A=\dfrac{\sin 3A}{\cos 3A}
Converting this into cosine terms using the identity, sin2θ+cos2θ=1sinθ=1cos2θ{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\Rightarrow \sin \theta =\sqrt{1-{{\cos }^{2}}\theta }, so above expression can be written as,
tan3A=1cos23Acos3A\tan 3A=\dfrac{\sqrt{1-{{\cos }^{2}}3A}}{\cos 3A}
Substituting the values from equation (i), we get
tan3A=100=10\tan 3A=\dfrac{\sqrt{1-0}}{0}=\dfrac{1}{0}
Hence, tan3A\tan 3A has the value of 10\dfrac{1}{0} which means tan3A\tan 3A is undefined.
The value of tan3A\tan 3A is undefined.

Note: We can do by another method as we know that cos30=32\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} so we can say that
cosA=cos30 A=30 \begin{aligned} & \cos A=\cos {{30}^{\circ }} \\\ & A={{30}^{\circ }} \\\ \end{aligned}
Then value of,
3A=3×30=90.3A=3\times {{30}^{\circ }}={{90}^{\circ }}.
Then value of,
tan3a=tan90\tan 3a=\tan {{90}^{\circ }}
This is undefined.
Another approach is using the direct formula, cos3A=4cos3A3cosA\cos 3A=4{{\cos }^{3}}A-3\cos A.