Solveeit Logo

Question

Question: If the trigonometric equation \(\sin 2A = 2\sin A\) is true then find the value of \(A\). (A) \({0...

If the trigonometric equation sin2A=2sinA\sin 2A = 2\sin A is true then find the value of AA.
(A) 0{0^ \circ }
(B) 30{30^ \circ }
(C) 45{45^ \circ }
(D) 60{60^ \circ }

Explanation

Solution

We know that from a trigonometric we have sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta . Use this formula in the equation given in the question. Simplify it further and solve it to find the value of angle AA.

Complete step-by-step solution:
According to the question, we have been given a trigonometric equation and we have to find the value of an unknown angle.
The given trigonometric equation is:
sin2A=2sinA\Rightarrow \sin 2A = 2\sin A.
For solving this equation we’ll apply the trigonometric formula sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta on the left hand side of the equation. Doing this, we’ll get:
2sinAcosA=2sinA\Rightarrow 2\sin A\cos A = 2\sin A
We can cancel out 2 from both sides.
sinAcosA=sinA\Rightarrow \sin A\cos A = \sin A
Transferring all the terms on one side of the equation, we’ll get:
sinAcosAsinA=0\Rightarrow \sin A\cos A - \sin A = 0
Now simplifying it further by factoring, we’ll get:
sinA(cosA1)=0\Rightarrow \sin A\left( {\cos A - 1} \right) = 0
For this equation to be true, both of its factors can be zero:

sinA=0 or cosA1=0 sinA=0 or cosA=1 A=0 or A=0 \Rightarrow \sin A = 0{\text{ or }}\cos A - 1 = 0 \\\ \Rightarrow \sin A = 0{\text{ or }}\cos A = 1 \\\ \Rightarrow A = {0^ \circ }{\text{ or }}A = {0^ \circ }

Thus the value of angle A is 0{0^ \circ } in both the cases.

(A) is the correct option.

Note: In the above problem, we have used a trigonometric formula for double angle which is:
sin2θ=2sinθcosθ\Rightarrow \sin 2\theta = 2\sin \theta \cos \theta
Another form of the formula of sin2θ\sin 2\theta is:
sin2θ=2tanθ1+tan2θ\Rightarrow \sin 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}
Some of the other widely used double angle trigonometric formulas are:
cos2θ=2cos2θ1 cos2θ=12sin2θ cos2θ=cos2θsin2θ \Rightarrow \cos 2\theta = 2{\cos ^2}\theta - 1 \\\ \Rightarrow \cos 2\theta = 1 - 2{\sin ^2}\theta \\\ \Rightarrow \cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta
So we have the formula of cos2θ\cos 2\theta in three different forms. We can use any of them as per the requirement of the question.
Similarly the formula for tan2θ\tan 2\theta is:
tan2θ=2tanθ1tan2θ\Rightarrow \tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}