Solveeit Logo

Question

Question: If the transversal y = m<sub>r</sub> x; r = 1, 2, 3 cut off equal intercepts on the transversal <img...

If the transversal y = mr x; r = 1, 2, 3 cut off equal intercepts on the transversal then 1+m11 + m _ { 1 } 1+m21 + m _ { 2 } 1+m31 + m _ { 3 } are in.

A

A. P.

B

G. P.

C

H. P.

D

None of these

Answer

H. P.

Explanation

Solution

Solving y=mrxy = m _ { r } xand x+y=1x + y = 1 , we get x=11+mrx = \frac { 1 } { 1 + m _ { r } } and y=mr1+mry = \frac { m _ { r } } { 1 + m _ { r } }. Thus the points of intersection of the three lines on the transversal are (11+m1,m11+m1)\left( \frac { 1 } { 1 + m _ { 1 } } , \frac { m _ { 1 } } { 1 + m _ { 1 } } \right) (11+m2,m21+m2)\left( \frac { 1 } { 1 + m _ { 2 } } , \frac { m _ { 2 } } { 1 + m _ { 2 } } \right) and (11+m3,m31+m3)\left( \frac { 1 } { 1 + m _ { 3 } } , \frac { m _ { 3 } } { 1 + m _ { 3 } } \right)

By hypothesis, (11+m111+m2)2+(m11+m1m21+m2)2\left( \frac { 1 } { 1 + m _ { 1 } } - \frac { 1 } { 1 + m _ { 2 } } \right) ^ { 2 } + \left( \frac { m _ { 1 } } { 1 + m _ { 1 } } - \frac { m _ { 2 } } { 1 + m _ { 2 } } \right) ^ { 2 }