Solveeit Logo

Question

Question: if the trace of a matrix is given as \[tr(A)=2+i\], then \[tr\left[ \left( 2-i \right)A \right]=\] ...

if the trace of a matrix is given as tr(A)=2+itr(A)=2+i, then tr[(2i)A]=tr\left[ \left( 2-i \right)A \right]=
A. 2+i2+i
B. 2i2-i
C. 33
D. 55

Explanation

Solution

Hint:- tr(A)=2+itr(A)=2+i and we have to find tr[(2i)A]tr\left[ \left( 2-i \right)A \right]. We know that the tr(cA)tr(cA) is given by the formulae tr(cA)=c×tr(A)tr(cA)=c\times tr(A). As we know the values of c=2ic=2-i and tr(A)=2+itr(A)=2+i. So, by multiplying these two terms we will get the required tr[(2i)A]tr\left[ \left( 2-i \right)A \right].

Complete step-by-step solution -
Given, tr(A)=2+itr(A)=2+i
We have to find the tr[(2i)A]tr\left[ \left( 2-i \right)A \right]
We know that the formulae for tr(cA)tr(cA) is given by tr(cA)=c×tr(A)tr(cA)=c\times tr(A). . . . . . .. . . (1)
So here in this problem c=2ic=2-i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . (2)
And tr(A)=2+itr(A)=2+i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(3)
tr[(2i)A]=tr\left[ \left( 2-i \right)A \right]= (2i)(2+i)(2-i)(2+i) . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . (4)
=22i2={{2}^{2}}-{{i}^{2}}
=4+1=4+1
=5=5
So the correct option is option(D)

Note: The trace of a square matrix is defined as the sum of the elements on the main diagonal. Some other properties of trace of a matrix is that the trace is called linear mapping means tr(A+B)=tr(A)+tr(B)tr(A+B)=tr(A)+tr(B)and tr(cA)=c×tr(A)tr(cA)=c\times tr(A).