Solveeit Logo

Question

Physics Question on Electromagnetic induction

If the total energy transferred to a surface in time tt is 6.48×105J6.48 \times 10^5 \, \text{J}, then the magnitude of the total momentum delivered to this surface for complete absorption will be :

A

2.16×103kg m/s2.16 \times 10^{-3} \, \text{kg m/s}

B

2.46×103kg m/s2.46 \times 10^{-3} \, \text{kg m/s}

C

1.58×103kg m/s1.58 \times 10^{-3} \, \text{kg m/s}

D

4.32×103kg m/s4.32 \times 10^{-3} \, \text{kg m/s}

Answer

2.16×103kg m/s2.16 \times 10^{-3} \, \text{kg m/s}

Explanation

Solution

The relationship between energy EE and momentum pp for electromagnetic radiation can be expressed as:

p=Ec,p = \frac{E}{c},

where:
- pp is the momentum,
- EE is the energy transferred,
- cc is the speed of light (c3×108m/sc \approx 3 \times 10^8 \, \text{m/s}).

Given:

E=6.48×105J.E = 6.48 \times 10^5 \, \text{J}.

Substituting the values into the momentum formula:

p=6.48×105J3×108m/s.p = \frac{6.48 \times 10^5 \, \text{J}}{3 \times 10^8 \, \text{m/s}}.

Calculating:

p=6.483×103=2.16×103kg m/s.p = \frac{6.48}{3} \times 10^{-3} = 2.16 \times 10^{-3} \, \text{kg m/s}.

Thus, the magnitude of the total momentum delivered to this surface for complete absorption is:

2.16×103kg m/s.2.16 \times 10^{-3} \, \text{kg m/s}.