Solveeit Logo

Question

Question: If the \[{{\text{E}}^{\text{0}}}_{{\text{cell}}}\] for a given reaction has a negative value, then w...

If the E0cell{{\text{E}}^{\text{0}}}_{{\text{cell}}} for a given reaction has a negative value, then which of the following gives the correct relationships for the values of Δ G0{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}and Keq{{\text{K}}_{{\text{eq}}}}?
A) Δ G0<0;Keq>1{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} < 0;{{\text{K}}_{{\text{eq}}}} > 1
B) Δ G0<0;Keq<1{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} < 0;{{\text{K}}_{{\text{eq}}}} < 1
C) Δ G0>0;Keq<1{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} > 0;{{\text{K}}_{{\text{eq}}}} < 1
D) Δ G0>0;Keq>1{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} > 0;{{\text{K}}_{{\text{eq}}}} > 1

Explanation

Solution

Using the equation related to E0cell{{\text{E}}^{\text{0}}}_{{\text{cell}}} and Δ G0{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} determine the sign of Δ G0{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} value for a negative value of E0cell{{\text{E}}^{\text{0}}}_{{\text{cell}}} . The negative sign of Δ G0{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} indicates it is less than 0 while the positive sign indicates it is greater than 0.
Similarly using the relation between E0cell{{\text{E}}^{\text{0}}}_{{\text{cell}}} and Keq{{\text{K}}_{{\text{eq}}}} determine the sign of lnKeq{\text{ln}}{{\text{K}}_{{\text{eq}}}}value. Using the sign lnKeq{\text{ln}}{{\text{K}}_{{\text{eq}}}} value predicts the value of Keq{{\text{K}}_{{\text{eq}}}}. Negative value of lnKeq{\text{ln}}{{\text{K}}_{{\text{eq}}}}indicates Keq<1{{\text{K}}_{{\text{eq}}}} < 1while the positive value of lnKeq{\text{ln}}{{\text{K}}_{{\text{eq}}}} indicates Keq>1{{\text{K}}_{{\text{eq}}}} > 1

Formula Used: Δ G0 = - nFE0cell{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}{\text{ = - nF}}{{\text{E}}^{\text{0}}}_{{\text{cell}}}
Δ G0 = - RTlnKeq{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}{\text{ = - RTln}}{{\text{K}}_{{\text{eq}}}}

Complete step by step answer:
The standard electrode potential of a metal may be defined as the potential difference in volts developed in a cell consisting of two electrodes, the pure metal in contact with a molar solution of one of its own ions and the normal hydrogen electrode.
The equation related to standard electrode potential and Gibbs free energy is as follows:
Δ G0 = - nFE0cell{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}{\text{ = - nF}}{{\text{E}}^{\text{0}}}_{{\text{cell}}}
Here,
Δ G0{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} = Gibbs free energy
n= number of electrons transfer
F = Faraday constant
E0cell{{\text{E}}^{\text{0}}}_{{\text{cell}}} = standard electrode potential
So, if the E0cell{{\text{E}}^{\text{0}}}_{{\text{cell}}} for a given reaction has a negative value then the value of Δ G0{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} would be positive.
The positive value of Δ G0{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} indicates that it is greater than 0.
So, for the given reaction Δ G0>0{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} > 0.

Now, using the relation between E0cell{{\text{E}}^{\text{0}}}_{{\text{cell}}} and Keq{{\text{K}}_{{\text{eq}}}} we can determine the sign of Keq{{\text{K}}_{{\text{eq}}}} as follows:
We know,
Δ G0 = - nFE0cell{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}{\text{ = - nF}}{{\text{E}}^{\text{0}}}_{{\text{cell}}}
And
Δ G0 = - RTlnKeq{\text{$\Delta$ }}{{\text{G}}^{\text{0}}}{\text{ = - RTln}}{{\text{K}}_{{\text{eq}}}}
So,
 - nFE0cell = - RTlnKeq{\text{ - nF}}{{\text{E}}^{\text{0}}}_{{\text{cell}}}{\text{ = - RTln}}{{\text{K}}_{{\text{eq}}}}
So, if the E0cell{{\text{E}}^{\text{0}}}_{{\text{cell}}} for a given reaction has a negative value then the value of lnKeq{\text{ln}}{{\text{K}}_{{\text{eq}}}} would be negative.
A negative value of lnKeq{\text{ln}}{{\text{K}}_{{\text{eq}}}} indicates Keq<1{{\text{K}}_{{\text{eq}}}} < 1.
Thus, if the E0cell{{\text{E}}^{\text{0}}}_{{\text{cell}}} for a given reaction has a negative value then Δ G0>0{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} > 0 and Keq<1{{\text{K}}_{{\text{eq}}}} < 1.

Hence, the correct option is (C) Δ G0>0;Keq<1{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} > 0;{{\text{K}}_{{\text{eq}}}} < 1

Note: The sign of Gibbs free energy indicates the spontaneity of the reaction. The signs of E0cell{{\text{E}}^{\text{0}}}_{{\text{cell}}} and Δ G0{\text{$\Delta$ }}{{\text{G}}^{\text{0}}} are always opposite to each other. The value of Keq<1{{\text{K}}_{{\text{eq}}}} < 1 when E0cell{{\text{E}}^{\text{0}}}_{{\text{cell}}} is negative and Keq>1{{\text{K}}_{{\text{eq}}}} > 1 when E0cell{{\text{E}}^{\text{0}}}_{{\text{cell}}} is positive.