Solveeit Logo

Question

Mathematics Question on Binomial theorem

If the term independent of xx in the expansion of (ax2+12x3)10\left( \sqrt{ax^2} + \frac{1}{2x^3} \right)^{10} is 105, then a2a^2 is equal to:

A

4

B

9

C

6

D

2

Answer

4

Explanation

Solution

Consider the given expression:

(ax2+12x3)10\left( \sqrt{ax^2} + \frac{1}{2x^3} \right)^{10}

The general term in the binomial expansion of (x+y)n(x + y)^n is given by:

Tr+1=(nr)xnryr.T_{r+1} = \binom{n}{r} x^{n-r} y^r.

For the given expression, the general term becomes:

Tr+1=(10r)(ax2)10r(12x3)r.T_{r+1} = \binom{10}{r} \left( \sqrt{ax^2} \right)^{10-r} \left( \frac{1}{2x^3} \right)^r.

Simplify the powers of xx:

Tr+1=(10r)(a)10rx(202r)×1(2x3)rT_{r+1} = \binom{10}{r} \left( \sqrt{a} \right)^{10-r} x^{(20-2r)} \times \frac{1}{(2x^3)^r}

Combine the powers of xx:

Tr+1=(10r)(a)10r×12r×x205rT_{r+1} = \binom{10}{r} \left( \sqrt{a} \right)^{10-r} \times \frac{1}{2^r} \times x^{20-5r}

To find the term independent of xx, set the power of xx to zero:

205r=020 - 5r = 0

Solve for rr:

r=4r = 4

Substitute r=4r = 4 into the general term:

T5=(104)(a)104×124T_5 = \binom{10}{4} \left( \sqrt{a} \right)^{10-4} \times \frac{1}{2^4}

Simplify:

T5=(104)(a)6×116T_5 = \binom{10}{4} \left( \sqrt{a} \right)^6 \times \frac{1}{16}

Substitute (104)=210\binom{10}{4} = 210:

T5=210×(a)6×116T_5 = 210 \times \left( \sqrt{a} \right)^6 \times \frac{1}{16}

T5=210×a316T_5 = 210 \times \frac{a^3}{16}

The value of T5T_5 is given as 105:

210×a316=105210 \times \frac{a^3}{16} = 105

Solve for a3a^3:

a3=105×16210a^3 = \frac{105 \times 16}{210}

a3=8a^3 = 8

Take the cube root of both sides:

a=83a = \sqrt[3]{8}

a=2a = 2

Finally, a2=4a^2 = 4.

Answer: (1) 4(1) \ 4