Solveeit Logo

Question

Question: If the temperature is raised by 1k from 300k, the percentage change in the speed of sound in the gas...

If the temperature is raised by 1k from 300k, the percentage change in the speed of sound in the gaseous mixture is (R=8.31Jmol.k)\left( {R = 8.31\dfrac{J}{{mol.k}}} \right)
(A) 0.167%0.167\%
(B) 0.334%0.334\%
(C) 1%1\%
(D) 2%2\%

Explanation

Solution

To find the percentage change in the speed of sound, we use the formula of speed of sound in terms of temperature i.e., VS=τRTM{V_S} = \sqrt {\dfrac{{\tau RT}}{M}}
Where R=R = gas constant
T=T = absolute temperature
M=M = Molecular mass
τ=\tau = Adiabatic constant

Complete step by step solution:
We know that according to replace Laplace correction formula of velocity of sound in terms of temperature is given as VS=τRTM{V_S} = \sqrt {\dfrac{{\tau RT}}{M}}
Here we use an error method to calculate the percentage change.

So, ΔVSVS=12ΔTT\dfrac{{\Delta {V_S}}}{{{V_S}}} = \dfrac{1}{2}\dfrac{{\Delta T}}{T}
Given that change in temperature ΔT=1k\Delta T = 1k
& initial temperature T=100kT = 100k
ΔVSVS×100%=12×1300×100%\dfrac{{\Delta {V_S}}}{{{V_S}}} \times 100\% = \dfrac{1}{2} \times \dfrac{1}{{300}} \times 100\%
%\% change in VS=ΔVSVS×100%=16{V_S} = \dfrac{{\Delta {V_S}}}{{{V_S}}} \times 100\% = \dfrac{1}{6}
=0.1666%= 0.1666\%

Hence option A is correct answer.

Note: Error method gives an approximate answer. If we want to calculate exact answer then we have to put the values of τ,\tau, R, H and T in the given formula
VS=τRTM{V_S} = \sqrt {\dfrac{{\tau RT}}{M}}
Now, Ti=300k{T_i} = 300k
So, VS=τR(300)M{V_S} = \sqrt {\dfrac{{\tau R(300)}}{M}}
Finally T becomes =300+1=301k = 300 + 1 = 301k
So, VS1=τR(301)MV_S^1 = \sqrt {\dfrac{{\tau R(301)}}{M}}
Now for %\% change in VS{V_S}
(VS1VSVS)×100%=τRM[301300]τRM300×100\left( {\dfrac{{V_S^1 - {V_S}}}{{{V_S}}}} \right) \times 100\% = \dfrac{{\sqrt {\dfrac{{\tau R}}{M}} \left[ {\sqrt {301} - \sqrt {300} } \right]}}{{\sqrt {\dfrac{{\tau R}}{M}} \sqrt {300} }} \times 100
%\% change in VS=(301300)300×100%{V_S} = \dfrac{{\left( {\sqrt {301} - \sqrt {300} } \right)}}{{\sqrt {300} }} \times 100\%
=(17.34917.320)17.320×100= \dfrac{{(17.349 - 17.320)}}{{17.320}} \times 100
=0.0016743×100%= 0.0016743 \times 100\%
=0.1674%= 0.1674\%