Question
Mathematics Question on Application of derivatives
If the tangents drawn to the hyperbola 4y2=x2+1 intersect the co-ordinate axes at the distinct points A and B , then the locus of the mid point of AB is :
A
x2−4y2+16x2y2=0
B
x2−4y2−16x2y2=0
C
4x2−y2+16x2y2=0
D
4x2−y2−16x2y2=0
Answer
x2−4y2−16x2y2=0
Explanation
Solution
4y2=x2+1
Point 4yy1=xx1+1 with 4y12=x12+1
x axis x−1,0]
y axis [0,4y11]
Mid point h=2x−1,k=8y11
x1=2h−1y1=8k1
4(8k1)2=(2h−1)2+1
4k24=4b51+1
16y21=4b21+1
16y21=4x21+4x2