Question
Mathematics Question on Circle
If the tangents drawn at the points O(0, 0) and P(1 + √5, 2) on the circle x 2 + y 2 - 2 x - 4 y = 0 intersect at the point Q , then the area of the triangle OPQ is equal to
A
23+5
B
24+25
C
25+35
D
27+35
Answer
25+35
Explanation
Solution
The correct answer is (C) : 25+35
Fig. Tangent
tan2θ=2⇒1−tan2θ2tanθ=2
tanθ=25−1
( as θ is acute )
Area = \frac{1}{2} L²$$sin 2θ = \frac{1}{2} . \frac{5}{tan²θ} . 2sinθcosθ
=sin2θ5sinθcosθ.cos2θ
= 5cotθ.cos²θ
=5.5−12.1+(25−1)21
=5−110.4+6−254
=25(5−1)240=6−2545
=1645(6+25)
=25(3+5)