Solveeit Logo

Question

Question: If the tangent to the parabola \(y ^ { 2 } = a x\) makes an angle of \(45 ^ { ullet }\) with x-a...

If the tangent to the parabola y2=axy ^ { 2 } = a x makes an angle of 45 ^ { ullet } with x-axis, then the point of contact is

A

(a2,a2)\left( \frac { a } { 2 } , \frac { a } { 2 } \right)

B

(a4,a4)\left( \frac { a } { 4 } , \frac { a } { 4 } \right)

C

(a2,a4)\left( \frac { a } { 2 } , \frac { a } { 4 } \right)

D

(a4,a2)\left( \frac { a } { 4 } , \frac { a } { 2 } \right)

Answer

(a4,a2)\left( \frac { a } { 4 } , \frac { a } { 2 } \right)

Explanation

Solution

Parabola is y2=axy ^ { 2 } = a x i.e. y2=4(a4)xy ^ { 2 } = 4 \left( \frac { a } { 4 } \right) x .....(i)

Let point of contact is (x1, y1). ∴ Equation of tangent is yy1=2(a/4)y1(xx1)y - y _ { 1 } = \frac { 2 ( a / 4 ) } { y _ { 1 } } \left( x - x _ { 1 } \right)y=a2y1(x)ax12y1+y1y = \frac { a } { 2 y _ { 1 } } ( x ) - \frac { a x _ { 1 } } { 2 y _ { 1 } } + y _ { 1 }

Here, m=a2y1=tan45m = \frac { a } { 2 y _ { 1 } } = \tan 45 ^ { \circ }a2y1=1\frac { a } { 2 y _ { 1 } } = 1y1=a2y _ { 1 } = \frac { a } { 2 } .

From (i), x1=a4x _ { 1 } = \frac { a } { 4 } So point is (a4,a2)\left( \frac { a } { 4 } , \frac { a } { 2 } \right)