Solveeit Logo

Question

Mathematics Question on Application of derivatives

If the tangent to the curve 2y3=ax2+x32y^3 = ax^2 + x^3 at the point (a,a)(a, a) cuts off intercepts α\alpha and β\beta on the coordinate axes where α2+β2=61\alpha^2 + \beta^2 = 61, then the value of aa is

A

2525

B

3636

C

±30\pm\,30

D

±40\pm\, 40

Answer

±30\pm\,30

Explanation

Solution

2y3=ax2+x32 y^{3}=a x^{2}+x^{3}
6y2dydx=2ax+3x26 y^{2} \frac{d y}{d x}=2 a x+3 x^{2}
dydx(a,a)=5a26a2=56\left.\frac{d y}{d x}\right|_{(a, a)}=\frac{5 a^{2}}{6 a^{2}}=\frac{5}{6}
Tangent at (a,a)(a, a) is 5x6y=a5 x-6 y=-a
α=a5,\alpha=\frac{-a}{5},
β=a6\beta=\frac{a}{6}
α2+β2=61\alpha^{2}+\beta^{2}=61
a225+a236=61\Rightarrow \frac{a^{2}}{25}+\frac{a^{2}}{36}=61
a2=25.36a ^{2}=25.36
a=±30a =\pm 30