Question
Question: If the tangent on the point (2 sec φ, 3 tan φ) of the hyperbola \(\frac{x^{2}}{4} - \frac{y^{2}}{9}\...
If the tangent on the point (2 sec φ, 3 tan φ) of the hyperbola 4x2−9y2 = 1 is parallel to 3x – y + 4 = 0, then the value of φ is
A
450
B
600
C
300
D
750
Answer
300
Explanation
Solution
Differentiation of x = 2 sec φ ⇒ dφdx = 2 sec ⇒ tan ⇒
Differentiate, y = 3 tan ⇒ w.r.t ⇒, we get dφdy = 3 sec2 φ
∴ Gradient of tangent dxdy=dx/dφdy/dφ=2secφtanφ3sec2φ
dxdy=23cosec φ
But, tangent is parallel to 3x – y + 4 = 0
∴ Gradient m = 3
By (I) and (ii), 23cosec φ = 3 ⇒ cosec φ = 2, ∴ φ = 300.