Solveeit Logo

Question

Question: If the tangent on the point (2 sec φ, 3 tan φ) of the hyperbola \(\frac{x^{2}}{4} - \frac{y^{2}}{9}\...

If the tangent on the point (2 sec φ, 3 tan φ) of the hyperbola x24y29\frac{x^{2}}{4} - \frac{y^{2}}{9} = 1 is parallel to 3x – y + 4 = 0, then the value of φ is

A

450

B

600

C

300

D

750

Answer

300

Explanation

Solution

Differentiation of x = 2 sec φ ⇒ dxdφ\frac{dx}{d\varphi} = 2 sec ⇒ tan ⇒

Differentiate, y = 3 tan ⇒ w.r.t ⇒, we get dydφ\frac{dy}{d\varphi} = 3 sec2 φ

∴ Gradient of tangent dydx=dy/dφdx/dφ=3sec2φ2secφtanφ\frac{dy}{dx} = \frac{dy/d\varphi}{dx/d\varphi} = \frac{3\sec^{2}\varphi}{2\sec\varphi\tan\varphi}

dydx=32\frac{dy}{dx} = \frac{3}{2}cosec φ

But, tangent is parallel to 3x – y + 4 = 0

∴ Gradient m = 3

By (I) and (ii), 32\frac{3}{2}cosec φ = 3 ⇒ cosec φ = 2, ∴ φ = 300.