Solveeit Logo

Question

Question: If the tangent at the point \[P\left( {2,4} \right)\] to the parabola \[{y^2} = 8x\] meets the parab...

If the tangent at the point P(2,4)P\left( {2,4} \right) to the parabola y2=8x{y^2} = 8x meets the parabola y2=8x+5{y^2} = 8x + 5 at QQ and RR, then the midpoint of QRQR is
A. (2,4)\left( {2,4} \right)
B. (4,2)\left( {4,2} \right)
C. (7,9)\left( {7,9} \right)
D. None

Explanation

Solution

- Hint: First of all, find the tangent of the parabola y2=8x{y^2} = 8x. Then solve the formed tangent and the other parabola to find their points of intersection. And use the midpoint formula to find the required answer.

Complete step-by-step solution -

Given parabola: y2=8x..........................................(1){y^2} = 8x..........................................\left( 1 \right)
y2=8x+5..........................................(2){y^2} = 8x + 5..........................................\left( 2 \right)
We know that the tangent of the parabola y2=4ax{y^2} = 4ax at point (x1,y1)\left( {{x_1},{y_1}} \right) is given by yy1=2a(x+x1)y{y_1} = 2a\left( {x + {x_1}} \right).
So, the tangent of the parabola y2=8x{y^2} = 8x at point P(2,4)P\left( {2,4} \right) is

4y=2×2(x+2) 4y=4(x+2) y=x+2.................................................(3)  4y = 2 \times 2\left( {x + 2} \right) \\\ 4y = 4\left( {x + 2} \right) \\\ \therefore y = x + 2.................................................\left( 3 \right) \\\

Given the point of intersection of the tangent y=x+2y = x + 2 and the parabola y2=8x+5{y^2} = 8x + 5 are QQ and RR.
By solving equation (2) and (3), we get the point of intersection i.e., QQ and RR

(x+2)2=8x+5 x2+4x+4=8x+5 x2+4x8x+45=0 x24x1=0  \Rightarrow {\left( {x + 2} \right)^2} = 8x + 5 \\\ \Rightarrow {x^2} + 4x + 4 = 8x + 5 \\\ \Rightarrow {x^2} + 4x - 8x + 4 - 5 = 0 \\\ \Rightarrow {x^2} - 4x - 1 = 0 \\\

We know that the roots of the quadratic equation ax2+bx+c=0a{x^2} + bx + c = 0 is given by x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}
So, the roots of the equation x24x1=0{x^2} - 4x - 1 = 0 is

x=4±424(1)(1)2(1) x=4±16+42 x=4±4×52 x=4±252 x=2±5  x = \dfrac{{4 \pm \sqrt {{4^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}} \\\ x = \dfrac{{4 \pm \sqrt {16 + 4} }}{2} \\\ x = \dfrac{{4 \pm \sqrt {4 \times 5} }}{2} \\\ x = \dfrac{{4 \pm 2\sqrt 5 }}{2} \\\ \therefore x = 2 \pm \sqrt 5 \\\

From equation (3), if x=25x = 2 - \sqrt 5 then y=25+2=45y = 2 - \sqrt 5 + 2 = 4 - \sqrt 5
From equation (3), if x=2+5x = 2 + \sqrt 5 then y=2+5+2=4+5y = 2 + \sqrt 5 + 2 = 4 + \sqrt 5
So, the points of intersection are Q(25,45) and R(2+5,4+5)Q\left( {2 - \sqrt 5 ,4 - \sqrt 5 } \right){\text{ and }}R\left( {2 + \sqrt 5 ,4 + \sqrt 5 } \right)
Hence the midpoint of QRQR is

(25+2+52,45+4+52) (2+22,4+42) (42,82) (2,4)  \left( {\dfrac{{2 - \sqrt 5 + 2 + \sqrt 5 }}{2},\dfrac{{4 - \sqrt 5 + 4 + \sqrt 5 }}{2}} \right) \\\ \left( {\dfrac{{2 + 2}}{2},\dfrac{{4 + 4}}{2}} \right) \\\ \left( {\dfrac{4}{2},\dfrac{8}{2}} \right) \\\ \left( {2,4} \right) \\\

Thus, the correct option is A. (2,4)\left( {2,4} \right)

Note: The midpoints of the points (x1,y1) and (x2,y2)\left( {{x_1},{y_1}} \right){\text{ and }}\left( {{x_2},{y_2}} \right) is given by (x1+x22,y1+y22)\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right). The roots of the quadratic equation ax2+bx+c=0a{x^2} + bx + c = 0 is given by x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}. The transverse axis of both the given parabolas is x-axis.