Solveeit Logo

Question

Question: If the tangent at the point \(\left( 4\cos\varphi,\frac{16}{\sqrt{11}}\sin\varphi \right)\)to the el...

If the tangent at the point (4cosφ,1611sinφ)\left( 4\cos\varphi,\frac{16}{\sqrt{11}}\sin\varphi \right)to the ellipse 16x2 + 11y2 = 256 is also a tangent to the circle

x2 + y2 – 2x = 15, then the value of f is -

A

± π2\frac{\pi}{2}

B

±π4\frac{\pi}{4}

C

± π3\frac{\pi}{3}

D

± π6\frac{\pi}{6}

Answer

± π3\frac{\pi}{3}

Explanation

Solution

The equation of the tangent at (4cosφ,1611sinφ)\left( 4\cos\varphi,\frac{16}{\sqrt{11}}\sin\varphi \right)

to the ellipse 16x2 + 11y2 = 256 is

16x (4 cos f) + 11y (1611sinφ)\left( \frac{16}{\sqrt{11}}\sin\varphi \right) = 256

or 4x cos f +11\sqrt{11}y sin f = 16

This touches the circle (x – 1)2 + y2 = 42, therefore

4cosφ1616cos2φ+11sin2φ\left| \frac{4\cos\varphi - 16}{\sqrt{16\cos^{2}\varphi + 11\sin^{2}\varphi}} \right|= 4

Ž (cos f – 4)2 = 16 cos2 f + 11 sin2 f

Ž 15cos2 f + 11 sin2 f + 8 cos f – 16 = 0

Ž 4 cos2 f + 8 cos f – 5 = 0

Ž (2 cos f – 1) (2 cos f + 5) = 0 Ž cos f = 12\frac{1}{2} Ž f = ± π3\frac{\pi}{3}.