Question
Question: If the tangent at the point \(\left( 4\cos\varphi,\frac{16}{\sqrt{11}}\sin\varphi \right)\)to the el...
If the tangent at the point (4cosφ,1116sinφ)to the ellipse 16x2 + 11y2 = 256 is also a tangent to the circle
x2 + y2 – 2x = 15, then the value of f is -
A
± 2π
B
±4π
C
± 3π
D
± 6π
Answer
± 3π
Explanation
Solution
The equation of the tangent at (4cosφ,1116sinφ)
to the ellipse 16x2 + 11y2 = 256 is
16x (4 cos f) + 11y (1116sinφ) = 256
or 4x cos f +11y sin f = 16
This touches the circle (x – 1)2 + y2 = 42, therefore
16cos2φ+11sin2φ4cosφ−16= 4
Ž (cos f – 4)2 = 16 cos2 f + 11 sin2 f
Ž 15cos2 f + 11 sin2 f + 8 cos f – 16 = 0
Ž 4 cos2 f + 8 cos f – 5 = 0
Ž (2 cos f – 1) (2 cos f + 5) = 0 Ž cos f = 21 Ž f = ± 3π.