Question
Question: If the tangent at the point (4 cos f , (16/Ö11) sin f) to the ellipse 16x<sup>2</sup> + 11y<sup>2</s...
If the tangent at the point (4 cos f , (16/Ö11) sin f) to the ellipse 16x2 + 11y2 = 256 is also a tangent to the circle x2 + y2 – 2x = 15, then the value of f is-
A
± p/2
B
± p/4
C
± p/3
D
± p/6
Answer
± p/3
Explanation
Solution
The equation of the tangent at
(4 cos f, (16/Ö11) sin f) to the ellipse
16x2 + 11y2 = 256.
is 16x (4 cos f) + 11y ((16/Ö11) sin f) = 256
Ž 4x cos f + Ö11y sin f = 16
This touches the circle (x – 1)2 + y2 = 42, therefore 16cos2φ+11sin2φ4cosφ−16 = 4
Ž (cos f – 4)2 = 16 cos2 f + 11 sin2 f
Ž 15cos2 f + 11 sin2 f + 8 cos f – 16 = 0
Ž 4 cos2 f + 8 cos f – 5 = 0
Ž (2 cos f – 1) (2 cos f + 5) = 0
Ž cos f = 1/2 Ž f = ± p/3.