Solveeit Logo

Question

Question: If the tangent at the point (4 cos f , (16/Ö11) sin f) to the ellipse 16x<sup>2</sup> + 11y<sup>2</s...

If the tangent at the point (4 cos f , (16/Ö11) sin f) to the ellipse 16x2 + 11y2 = 256 is also a tangent to the circle x2 + y2 – 2x = 15, then the value of f is-

A

± p/2

B

± p/4

C

± p/3

D

± p/6

Answer

± p/3

Explanation

Solution

The equation of the tangent at

(4 cos f, (16/Ö11) sin f) to the ellipse

16x2 + 11y2 = 256.

is 16x (4 cos f) + 11y ((16/Ö11) sin f) = 256

Ž 4x cos f + Ö11y sin f = 16

This touches the circle (x – 1)2 + y2 = 42, therefore 4cosφ1616cos2φ+11sin2φ\left| \frac{4\cos\varphi - 16}{\sqrt{16\cos^{2}\varphi + 11\sin^{2}\varphi}} \right| = 4

Ž (cos f – 4)2 = 16 cos2 f + 11 sin2 f

Ž 15cos2 f + 11 sin2 f + 8 cos f – 16 = 0

Ž 4 cos2 f + 8 cos f – 5 = 0

Ž (2 cos f – 1) (2 cos f + 5) = 0

Ž cos f = 1/2 Ž f = ± p/3.