Solveeit Logo

Question

Question: If the tangent at the point \((2\sec\varphi,3\tan\varphi)\) on the hyperbola \(\frac{x^{2}}{4} - \fr...

If the tangent at the point (2secφ,3tanφ)(2\sec\varphi,3\tan\varphi) on the hyperbola x24y29=1\frac{x^{2}}{4} - \frac{y^{2}}{9} = 1 is parallel to 3xy+4=03x - y + 4 = 0, then the value of φ\varphi is

A

45o45^{o}

B

60o60^{o}

C

30o30^{o}

D

75o75^{o}

Answer

30o30^{o}

Explanation

Solution

Here x=2secφx = 2\sec\varphi and y=3tanφy = 3\tan\varphi

Differentiating w.r.t. φ

dxdφ=2secφtanφ\frac{dx}{d\varphi} = 2\sec\varphi\tan\varphi and dydφ=3sec2φ\frac{dy}{d\varphi} = 3\sec^{2}\varphi

\thereforeGradient of tangent dydx=dy/dφdx/dφ=3sec2φ2secφtanφ\frac{dy}{dx} = \frac{dy/d\varphi}{dx/d\varphi} = \frac{3\sec^{2}\varphi}{2\sec\varphi\tan\varphi};

\therefore dydx=32cosecφ\frac{dy}{dx} = \frac{3}{2}\text{cosec}\varphi .....(i)

But tangent is parallel to 3xy+4=03x - y + 4 = 0; \therefore Gradient m=3m = 3

......(ii)

From (i) and (ii), 32cosecφ=3\frac{3}{2}\text{cosec}\varphi = 3cosecφ=2\text{cosec}\varphi = 2, \therefore φ=30o\varphi = 30^{o}