Solveeit Logo

Question

Question: If the tangent at \( \left( {{x}_{1}},{{y}_{1}} \right) \) to the curve \( {{x}^{3}}+{{y}^{3}}={{a}^...

If the tangent at (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) to the curve x3+y3=a3{{x}^{3}}+{{y}^{3}}={{a}^{3}} meets the curve again at (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) , then
A. x2x1+y2y1=1\dfrac{{{x}_{2}}}{{{x}_{1}}}+\dfrac{{{y}_{2}}}{{{y}_{1}}}=-1
B. x2y1+x1y2=1\dfrac{{{x}_{2}}}{{{y}_{1}}}+\dfrac{{{x}_{1}}}{{{y}_{2}}}=-1
C. x1x2+y1y2=1\dfrac{{{x}_{1}}}{{{x}_{2}}}+\dfrac{{{y}_{1}}}{{{y}_{2}}}=-1
D. x2x1+y2y1=1\dfrac{{{x}_{2}}}{{{x}_{1}}}+\dfrac{{{y}_{2}}}{{{y}_{1}}}=1

Explanation

Solution

Hint : We first find the slopes for the curve x3+y3=a3{{x}^{3}}+{{y}^{3}}={{a}^{3}} at (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) which is same to the value of slope of the line joining the points (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) . We put the points (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) in the curve x3+y3=a3{{x}^{3}}+{{y}^{3}}={{a}^{3}} . We solve the equation from the relation.

Complete step-by-step answer :
The tangent at (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) to the curve x3+y3=a3{{x}^{3}}+{{y}^{3}}={{a}^{3}} meets the curve again at (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) .
The slope to the curve x3+y3=a3{{x}^{3}}+{{y}^{3}}={{a}^{3}} at (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) will be same to the value of slope of the line joining the points (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) .
We first find slope to the curve x3+y3=a3{{x}^{3}}+{{y}^{3}}={{a}^{3}} at (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) . We find derivatives of the curve x3+y3=a3{{x}^{3}}+{{y}^{3}}={{a}^{3}} .
ddx(x3+y3)=ddx(a3) 3x2+3y2dydx=0  \dfrac{d}{dx}\left( {{x}^{3}}+{{y}^{3}} \right)=\dfrac{d}{dx}\left( {{a}^{3}} \right) \\\ \Rightarrow 3{{x}^{2}}+3{{y}^{2}}\dfrac{dy}{dx}=0 \\\
Simplifying we get dydx=x2y2\dfrac{dy}{dx}=-\dfrac{{{x}^{2}}}{{{y}^{2}}} . At point (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) will be [dydx](x1,y1)=x12y12{{\left[ \dfrac{dy}{dx} \right]}_{\left( {{x}_{1}},{{y}_{1}} \right)}}=-\dfrac{{{x}_{1}}^{2}}{{{y}_{1}}^{2}} .
Now the value of slope of the line joining the points (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) is y2y1x2x1\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}} .
Considering the relation, we get y2y1x2x1=x12y12\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=-\dfrac{{{x}_{1}}^{2}}{{{y}_{1}}^{2}} . Now we have to simplify.
Both (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) goes through curve x3+y3=a3{{x}^{3}}+{{y}^{3}}={{a}^{3}} .
So, x13+y13=a3{{x}_{1}}^{3}+{{y}_{1}}^{3}={{a}^{3}} and x23+y23=a3{{x}_{2}}^{3}+{{y}_{2}}^{3}={{a}^{3}} .
Subtracting we get x13x23=y23y13{{x}_{1}}^{3}-{{x}_{2}}^{3}={{y}_{2}}^{3}-{{y}_{1}}^{3} which gives y2y1x2x1=x22+x12+x1x2y22+y12+y1y2\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=-\dfrac{{{x}_{2}}^{2}+{{x}_{1}}^{2}+{{x}_{1}}{{x}_{2}}}{{{y}_{2}}^{2}+{{y}_{1}}^{2}+{{y}_{1}}{{y}_{2}}}.
So, y2y1x2x1=x12y12=x22+x12+x1x2y22+y12+y1y2\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=-\dfrac{{{x}_{1}}^{2}}{{{y}_{1}}^{2}}=-\dfrac{{{x}_{2}}^{2}+{{x}_{1}}^{2}+{{x}_{1}}{{x}_{2}}}{{{y}_{2}}^{2}+{{y}_{1}}^{2}+{{y}_{1}}{{y}_{2}}}.
Simplifying we get

x12y22+x12y12+x12y1y2=x22y12+x12y12+x1x2y12 x12y22x22y12=x1x2y12y1y2x12 (x1y2)2(x2y1)2=x1y1(x2y1y2x1)  {{x}_{1}}^{2}{{y}_{2}}^{2}+{{x}_{1}}^{2}{{y}_{1}}^{2}+{{x}_{1}}^{2}{{y}_{1}}{{y}_{2}}={{x}_{2}}^{2}{{y}_{1}}^{2}+{{x}_{1}}^{2}{{y}_{1}}^{2}+{{x}_{1}}{{x}_{2}}{{y}_{1}}^{2} \\\ \Rightarrow {{x}_{1}}^{2}{{y}_{2}}^{2}-{{x}_{2}}^{2}{{y}_{1}}^{2}={{x}_{1}}{{x}_{2}}{{y}_{1}}^{2}-{{y}_{1}}{{y}_{2}}{{x}_{1}}^{2} \\\ \Rightarrow {{\left( {{x}_{1}}{{y}_{2}} \right)}^{2}}-{{\left( {{x}_{2}}{{y}_{1}} \right)}^{2}}={{x}_{1}}{{y}_{1}}\left( {{x}_{2}}{{y}_{1}}-{{y}_{2}}{{x}_{1}} \right) \\\

Now we use the identity of a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) .

(x1y2)2(x2y1)2=x1y1(x2y1y2x1) (x1y2+y1x2)(x1y2y1x2)=x1y1(x2y1y2x1) x1y2+x2y1=x1y1 x2x1+y2y1=1  {{\left( {{x}_{1}}{{y}_{2}} \right)}^{2}}-{{\left( {{x}_{2}}{{y}_{1}} \right)}^{2}}={{x}_{1}}{{y}_{1}}\left( {{x}_{2}}{{y}_{1}}-{{y}_{2}}{{x}_{1}} \right) \\\ \Rightarrow \left( {{x}_{1}}{{y}_{2}}+{{y}_{1}}{{x}_{2}} \right)\left( {{x}_{1}}{{y}_{2}}-{{y}_{1}}{{x}_{2}} \right)={{x}_{1}}{{y}_{1}}\left( {{x}_{2}}{{y}_{1}}-{{y}_{2}}{{x}_{1}} \right) \\\ \Rightarrow {{x}_{1}}{{y}_{2}}+{{x}_{2}}{{y}_{1}}=-{{x}_{1}}{{y}_{1}} \\\ \Rightarrow \dfrac{{{x}_{2}}}{{{x}_{1}}}+\dfrac{{{y}_{2}}}{{{y}_{1}}}=-1 \\\

The correct option is A.
So, the correct answer is “Option A”.

Note : The slope of the curve x3+y3=a3{{x}^{3}}+{{y}^{3}}={{a}^{3}} at points (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) will not be same. So, we cannot equate them. We solve the slopes for the equations separately. The slopes are equal as the points (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) lies on the same line.