Solveeit Logo

Question

Question: If the tangent at \[\left( {1,1} \right)\] on \[{y^2} = x{\left( {2 - x} \right)^2}\] meets the curv...

If the tangent at (1,1)\left( {1,1} \right) on y2=x(2x)2{y^2} = x{\left( {2 - x} \right)^2} meets the curve again at PP, then find the coordinates of PP?

Explanation

Solution

Here in this question, we have to find the point P where the curve meets, to solve this first we have to find the slope at the given point by differentiating the equation of curve i.e., find m=(dydx)(1,1)m = {\left( {\dfrac{{dy}}{{dx}}} \right)_{\left( {1,1} \right)}} and later substitute a value of slope in a equation of tangent yy0=m(xx0)y - {y_0} = m\left( {x - {x_0}} \right) where (x0,y0)\left( {{x_0},{y_0}} \right) is the point where tangent line passes through and further simplify by method of factorization we get the required solution.

Complete step by step solution:
The tangent line to a curve at a given point is a straight line that just "touches" the curve at that point.
Considering the given equation of curve
y2=x(2x)2{y^2} = x{\left( {2 - x} \right)^2}---------(1)
Expand the RHS using a algebraic identity (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab, then
y2=x(22+x222x)\Rightarrow \,\,{y^2} = x\left( {{2^2} + {x^2} - 2 \cdot 2 \cdot x} \right)
y2=x(4+x24x)\Rightarrow \,\,{y^2} = x\left( {4 + {x^2} - 4x} \right)
Multiplying xx into the parenthesis on RHS, we get.
y2=4x+x34x2\Rightarrow \,\,{y^2} = 4x + {x^3} - 4{x^2}------(2)
The tangent line passes at the point (1,1)\left( {1,1} \right)
Now, differentiate the equation (2) with respect to x , and we get a slope of the line.
ddx(y2)=ddx(4x+x34x2)\Rightarrow \,\,\dfrac{d}{{dx}}\left( {{y^2}} \right) = \dfrac{d}{{dx}}\left( {4x + {x^3} - 4{x^2}} \right)
ddx(y2)=4ddx(x)+ddx(x3)4ddx(x2)\Rightarrow \,\,\dfrac{d}{{dx}}\left( {{y^2}} \right) = 4\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( {{x^3}} \right) - 4\dfrac{d}{{dx}}\left( {{x^2}} \right)
Differentiate using a formula ddxxn=nxn1\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}, then
2ydydx=4(1)+3x24(2x)\Rightarrow \,\,2y\dfrac{{dy}}{{dx}} = 4\left( 1 \right) + 3{x^2} - 4\left( {2x} \right)
2ydydx=4+3x28x\Rightarrow \,\,2y\dfrac{{dy}}{{dx}} = 4 + 3{x^2} - 8x
Divide both side by 2y, then
dydx=4+3x28x2y\Rightarrow \,\,\dfrac{{dy}}{{dx}} = \dfrac{{4 + 3{x^2} - 8x}}{{2y}}
Now find the slope m=dydxm = \dfrac{{dy}}{{dx}} at the point (1,1)\left( {1,1} \right), then
m=(dydx)(1,1)=4+3(1)28(1)2(1)\Rightarrow \,\,m = {\left( {\dfrac{{dy}}{{dx}}} \right)_{\left( {1,1} \right)}} = \dfrac{{4 + 3{{\left( 1 \right)}^2} - 8\left( 1 \right)}}{{2\left( 1 \right)}}
m=(dydx)(1,1)=4+382\Rightarrow \,\,m = {\left( {\dfrac{{dy}}{{dx}}} \right)_{\left( {1,1} \right)}} = \dfrac{{4 + 3 - 8}}{2}
m=(dydx)(1,1)=12\Rightarrow \,\,m = {\left( {\dfrac{{dy}}{{dx}}} \right)_{\left( {1,1} \right)}} = - \dfrac{1}{2}
Now, put equation of tangent lies at the point (1,1)\left( {1,1} \right) is:
The equation of tangent is yy0=m(xx0)y - {y_0} = m\left( {x - {x_0}} \right)
Here y0=1{y_0} = 1, x0=1{x_0} = 1 and m=12m = - \dfrac{1}{2}, on substituting we get
y1=(12)(x1)\Rightarrow \,\,y - 1 = \left( { - \dfrac{1}{2}} \right)\left( {x - 1} \right)
Multiply both side by 2, then
2(y1)=1(x1)\Rightarrow \,\,2\left( {y - 1} \right) = - 1\left( {x - 1} \right)
On simplification, we get
2y2=x+1\Rightarrow \,\,2y - 2 = - x + 1
Take all term in RHS to LHS, then
2y2+x1=0\Rightarrow \,\,2y - 2 + x - 1 = 0
x+2y3=0\Rightarrow \,\,x + 2y - 3 = 0--------(3)
Add 3 and subtract 2y on both sides, then
x=32y\Rightarrow \,\,x = 3 - 2y--------(4)
Now, substitute equation (4) in the equation of cure i.e., equation (1), we get.
y2=(32y)(2(32y))2\Rightarrow \,\,{y^2} = \left( {3 - 2y} \right){\left( {2 - \left( {3 - 2y} \right)} \right)^2}
y2=(32y)(23+2y)2\Rightarrow \,\,{y^2} = \left( {3 - 2y} \right){\left( {2 - 3 + 2y} \right)^2}
y2=(32y)(1+2y)2\Rightarrow \,\,{y^2} = \left( {3 - 2y} \right){\left( { - 1 + 2y} \right)^2}
Or
y2=(32y)(2y1)2\Rightarrow \,\,{y^2} = \left( {3 - 2y} \right){\left( {2y - 1} \right)^2}
Expand RHS using a algebraic identity: (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab, then
y2=(32y)((2y)2+122(2y)1)\Rightarrow \,\,{y^2} = \left( {3 - 2y} \right)\left( {{{\left( {2y} \right)}^2} + {1^2} - 2\left( {2y} \right)1} \right)
y2=(32y)(4y2+14y)\Rightarrow \,\,{y^2} = \left( {3 - 2y} \right)\left( {4{y^2} + 1 - 4y} \right)
y2=3(4y2+14y)2y(4y2+14y)\Rightarrow \,\,{y^2} = 3\left( {4{y^2} + 1 - 4y} \right) - 2y\left( {4{y^2} + 1 - 4y} \right)
On simplification, we have
y2=12y2+312y8y32y+8y2\Rightarrow \,\,{y^2} = 12{y^2} + 3 - 12y - 8{y^3} - 2y + 8{y^2}
Take RHS in to LHS, then
y212y23+12y+8y3+2y8y2=0\Rightarrow \,\,{y^2} - 12{y^2} - 3 + 12y + 8{y^3} + 2y - 8{y^2} = 0
8y319y2+14y3=0\Rightarrow \,\,8{y^3} - 19{y^2} + 14y - 3 = 0
It can be re-written as
8y38y211y2+11y+3y3=0\Rightarrow \,\,8{y^3} - 8{y^2} - 11{y^2} + 11y + 3y - 3 = 0
Take out the GCD, then
8y2(y1)11y(y1)+3(y1)=0\Rightarrow \,\,8{y^2}\left( {y - 1} \right) - 11y\left( {y - 1} \right) + 3\left( {y - 1} \right) = 0
Take (y1)\left( {y - 1} \right) as common, then
(y1)(8y211y+3)=0\Rightarrow \,\,\left( {y - 1} \right)\left( {8{y^2} - 11y + 3} \right) = 0-----(5)
Now, factorize
8y211y+3\Rightarrow \,\,8{y^2} - 11y + 3
8y28y3y+3\Rightarrow \,\,8{y^2} - 8y - 3y + 3
8y(y1)3(y1)\Rightarrow \,\,8y\left( {y - 1} \right) - 3\left( {y - 1} \right)
(y1)(8y3)\Rightarrow \,\,\left( {y - 1} \right)\left( {8y - 3} \right)
Then, equation (5) becomes
(y1)(y1)(8y3)=0\Rightarrow \,\,\left( {y - 1} \right)\left( {y - 1} \right)\left( {8y - 3} \right) = 0
Then,
y=1,1,38\Rightarrow \,\,y = 1,\,1,\,\dfrac{3}{8}
Take the value y=38y = \dfrac{3}{8}
Substituting yy value in equation (4), then
x=32(38)\Rightarrow \,\,x = 3 - 2\left( {\dfrac{3}{8}} \right)
x=334\Rightarrow \,\,x = 3 - \dfrac{3}{4}
Take 4 as LCM, then
x=1234\Rightarrow \,\,x = \dfrac{{12 - 3}}{4}
x=94\Rightarrow \,\,x = \dfrac{9}{4}
Therefore, the coordinates of point PP is (x,y)=(94,38)\left( {x,y} \right) = \left( {\dfrac{9}{4},\dfrac{3}{8}} \right).

Note:
The concept of the equation of tangent comes under the concept of application of derivatives. Here the major part is differentiation must know the standard differentiation formulas and we should know about the general equation of a line tangent. Hence these types of problems are solved by the above procedure and we can also find the equation of tangent using the above procedure.