Solveeit Logo

Question

Mathematics Question on Application of derivatives

If the tangent at a point PP, with parameter tt, on the curve x=4t2+3,y=8t31,tRx = 4t^2 + 3, y = 8t^3 - 1, t \in R, meets the curve again at a point QQ, then the coordinates of QQ are :

A

(t2+3,t31)(t^2 +3 , -t^3 -1)

B

(4t2+3,8t31)(4t^2 + 3, -8t^3 -1)

C

(t2+3,t31)(t^2 + 3, t^3 -1)

D

(16t2+3,64t31)(16t^2 +3 ,-64 t^3 - 1)

Answer

(t2+3,t31)(t^2 +3 , -t^3 -1)

Explanation

Solution

P(At2,38t31)P\left(^{A}t^{2}, \,3\, 8t^{3}\, 1\right)
du/dtdx/dt=dydx=3t\frac{du/dt}{dx/dt}=\frac{dy}{dx}=3t (slope of tangent at P)
Let Q=(4λ2+3,8λ31)Q=\left(4\lambda^{2}+3,8\lambda^{3}-1\right)
slope of PQ=3tPQ = 3t
8t38λ34t24λ2=3t\frac{8t^{3}-8\lambda ^{3}}{4t^{2}-4\lambda ^{2}}=3t
t2+tλ2λ2=0\Rightarrow t^{2}+t\lambda-2\lambda^{2}=0
(tλ)(t+2λ)=0\left(t-\lambda\right)\left(t+2\lambda\right)=0
t=λ(or)λ=t2t=\lambda\left(or\right)\lambda=\frac{-t}{2}
Q=[t2+3,t31]\therefore Q=\left[t^{2}+3,t^{3}-1\right]