Solveeit Logo

Question

Mathematics Question on Conic sections

If the tangent at a point on the ellipse x227+y23=1\frac{x^2}{27} + \frac{y^2}{3} =1 meets the coordinate axes at A and B, and O is the origin, them the minimum area (in s units) of the triangle OAB is:

A

92\frac{9}{2}

B

333 \sqrt{3}

C

939 \sqrt{3}

D

99

Answer

99

Explanation

Solution

Equation of tangent to ellipse
x27+y3=1\frac{x}{\sqrt{27}}+\frac{y}{\sqrt{3}}=1
Area bounded by line and co-ordinate axis

12×\frac12\timesintercept on x-axis ×\times intercept on y -axis
Δ=12.27m2+3m.27m2+3sin\Delta=\frac{1}{2}.\frac{\sqrt{27m^2+3}}{m}. {\sqrt{27m^2+3}}{sin}

12×(27m2+3)m\frac12\times\frac{(27m^2+3)}{m}

now apply

AM≥GM

27m+3m2\frac{27m+\frac3m}{2}27m×3m\sqrt{27m\times\frac3m}99
Δ\Delta
Δmin=9\Delta_{min}=9