Solveeit Logo

Question

Mathematics Question on Conic sections

If the tangent at (1,7)(1, 7) to the curve x2=y6x^2 = y - 6 touches the circle x2+y2+16x+12y+c=0x^2 + y^2 + 16x + 12y + c = 0 then the value of c is:

A

195

B

185

C

85

D

95

Answer

95

Explanation

Solution

Equation of tangent at (1,7)(1,7) to curve x2=y6x^{2}=y-6 is
x1=12(y+7)6x-1=\frac{1}{2}(y+7)-6
2xy+5=0...(i)2 x-y+5=0\,\,\,\,\,\,\,...(i)
Centre of circle =(8,6)=(-8,-6)
Radius of circle =64+36c=100c=\sqrt{64+36-c}=\sqrt{100-c}
\because Line (i) touches the circle
2(8)(6)+54+1=100c\therefore \left|\frac{2(-8)-(-6)+5}{\sqrt{4+1}}\right|=\sqrt{100-c}
5=100c\sqrt{5}=\sqrt{100-c}
c=95\Rightarrow c =95