Question
Mathematics Question on Linear Programming
If the system of linear equations
x + y + z = 2, 2x + y − z = 3, 3x + 2y + kz = 4
has a unique solution, then:
A
k=0
B
−1<k<1
C
−3<k<3
D
k=0
Answer
k=0
Explanation
Solution
To determine when the system has a unique solution, the determinant of the coefficient matrix must be nonzero. The coefficient matrix for the system is:
A=1 2 31121−1k
The determinant of A is:
det(A)=1 2 31121−1k
Expanding along the first row:
det(A)=1⋅1 2−1k−1⋅2 3−1k+1⋅2 312
Calculate each minor:
1 2−1k=(1)(k)−(2)(−1)=k+2
2 3−1k=(2)(k)−(3)(−1)=2k+3,
2 312=(2)(2)−(3)(1)=4−3=1.
Substitute these values back:
det(A)=1(k+2)−1(2k+3)+1(1).
Simplify:
det(A)=k+2−2k−3+1=−k.
For the system to have a unique solution, det(A)=0. Thus:
−k=0⟹k=0.
Final Answer:
k=0.