Solveeit Logo

Question

Mathematics Question on Linear Programming

If the system of linear equations
x + y + z = 2, 2x + y − z = 3, 3x + 2y + kz = 4
has a unique solution, then:

A

k=0k = 0

B

1<k<1-1 < k < 1

C

3<k<3-3 < k < 3

D

k0k \neq 0

Answer

k0k \neq 0

Explanation

Solution

To determine when the system has a unique solution, the determinant of the coefficient matrix must be nonzero. The coefficient matrix for the system is:

A=[111 211 32k]A=\begin{bmatrix} 1 & 1 & 1 \\\ 2 & 1 & -1 \\\ 3 & 2 & k \end{bmatrix}

The determinant of A is:

det(A)=111 211 32k\det(A)=\begin{vmatrix} 1 & 1 & 1 \\\ 2 & 1 & -1 \\\ 3 & 2 & k \end{vmatrix}

Expanding along the first row:

det(A)=111 2k121 3k+121 32\det(A)=1 \cdot \begin{vmatrix} 1 & -1 \\\ 2 & k \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & -1 \\\ 3 & k \end{vmatrix} + 1 \cdot \begin{vmatrix} 2 & 1 \\\ 3 & 2 \end{vmatrix}

Calculate each minor:

11 2k=(1)(k)(2)(1)=k+2\begin{vmatrix} 1 & -1 \\\ 2 & k \end{vmatrix} = (1)(k) - (2)(-1) = k + 2

21 3k=(2)(k)(3)(1)=2k+3,\begin{vmatrix} 2 & -1 \\\ 3 & k \end{vmatrix} = (2)(k) - (3)(-1) = 2k + 3,

21 32=(2)(2)(3)(1)=43=1.\begin{vmatrix} 2 & 1 \\\ 3 & 2 \end{vmatrix} = (2)(2) - (3)(1) = 4 - 3 = 1.

Substitute these values back:

det(A)=1(k+2)1(2k+3)+1(1).\det(A) = 1(k + 2) - 1(2k + 3) + 1(1).

Simplify:

det(A)=k+22k3+1=k.\det(A) = k + 2 - 2k - 3 + 1 = -k.

For the system to have a unique solution, det(A)0\det(A) \neq 0. Thus:

k0    k0.-k \neq 0 \implies k \neq 0.

Final Answer:

k0.k \neq 0.