Solveeit Logo

Question

Mathematics Question on Matrices

If the system of linear equations
x2y+z=4x - 2y + z = -4
2x+αy+3z=52x + \alpha y + 3z = 5
3xy+βz=33x - y + \beta z = 3
has infinitely many solutions, then 12α+13β12\alpha + 13\beta is equal to

A

60

B

64

C

54

D

58

Answer

58

Explanation

Solution

D=121 α33 31βD = \begin{vmatrix} 1 & -2 & 1 \\\ \alpha & 3 & 3 \\\ 3 & -1 & \beta \end{vmatrix} =1(αβ+3)+2(2β9)+1(23α)= 1(\alpha \beta + 3) + 2(2\beta - 9) + 1(-2 - 3\alpha) =αβ+3+4β1823α= \alpha \beta + 3 + 4\beta - 18 - 2 - 3\alpha

For infinite solutions, D=0D = 0, D1=0D_1 = 0, D2=0D_2 = 0, and D3=0D_3 = 0

D=0    αβ3α+4β=17....(1)D = 0 \quad \implies \quad \alpha \beta - 3\alpha + 4\beta = 17 \quad \text{....(1)} D1=421 533 31β=0,D2=211 5α3 33β=0D_1 = \begin{vmatrix} -4 & -2 & 1 \\\ 5 & 3 & 3 \\\ 3 & -1 & \beta \end{vmatrix} = 0, \quad D_2 = \begin{vmatrix} 2 & 1 & 1 \\\ 5 & \alpha & 3 \\\ 3 & 3 & \beta \end{vmatrix} = 0

D2=1(5β9)+4(2β9)+1(615)=0D_2 = 1(5\beta - 9) + 4(2\beta - 9) + 1(6 - 15) = 0 13β9369=0    13β=54,β=541313\beta - 9 - 36 - 9 = 0 \quad \implies \quad 13\beta = 54, \quad \beta = \frac{54}{13}

Substitute in (1):

5413α3α+4(5413)=17\frac{54}{13}\alpha - 3\alpha + 4\left(\frac{54}{13}\right) = 17 5413α39α+216=221\frac{54}{13}\alpha - 39\alpha + 216 = 221 15α=5    α=1315\alpha = 5 \quad \implies \quad \alpha = \frac{1}{3}

Now,

12α+13β=1213+13541312\alpha + 13\beta = 12 \cdot \frac{1}{3} + 13 \cdot \frac{54}{13} =4+54=58= 4 + 54 = 58