Solveeit Logo

Question

Question: If the system of linear equations \(x + 2ay + az = 0,x + 3\text{by} + bz = 0,x + 4cy + cz = 0\) has...

If the system of linear equations

x+2ay+az=0,x+3by+bz=0,x+4cy+cz=0x + 2ay + az = 0,x + 3\text{by} + bz = 0,x + 4cy + cz = 0 has a

non-zero solution, then a, b, c

A

Are in A.P.

B

Are in G.P.

C

Are in H.P.

D

Satisfy a+2b+3c=0a + 2b + 3c = 0

Answer

Are in H.P.

Explanation

Solution

System of linear equations has a non-zero solution, then 12aa13bb14cc=0\left| \begin{matrix} 1 & 2a & a \\ 1 & 3b & b \\ 1 & 4c & c \end{matrix} \right| = 0

Applying C2C22C3C_{2} \rightarrow C_{2} - 2C_{3}; 10a1bb12cc=0\left| \begin{matrix} 1 & 0 & a \\ 1 & b & b \\ 1 & 2c & c \end{matrix} \right| = 0

Applying R3R3R2andR2R2R1R_{3} \rightarrow R_{3} - R_{2}\text{and}R_{2} \rightarrow R_{2} - R_{1}

10a0bba02cbcb=0\left| \begin{matrix} 1 & 0 & a \\ 0 & b & b - a \\ 0 & 2c - b & c - b \end{matrix} \right| = 0 x51=100x+50+1\because x 51 = 100 x + 50 + 1 b(cb)(ba)(2cb)=0b(c - b) - (b - a)(2c - b) = 0.

On simplification 2b=1a+1c\frac{2}{b} = \frac{1}{a} + \frac{1}{c}; \therefore a, b, c are in H.P.