Solveeit Logo

Question

Mathematics Question on Linear Programming Problem and its Mathematical Formulation

If the system of linear equations.
8x+y\+4z=28x + y \+ 4z = –2
x+y+z=0x + y + z = 0
λx3y=μλx–3y=μ
has infinitely many solutions, then the distance of the point (λ,μ,1/2)(λ, μ, -1/2) from the plane 8x+y\+4z\+2=08x + y \+ 4z \+ 2 = 0 is

A

353\sqrt 5

B

44

C

169\frac {16}{9}

D

103\frac {10}{3}

Answer

103\frac {10}{3}

Explanation

Solution

Δ=814\[0.3em]111\[0.3em]λ30Δ=\begin{vmatrix} 8 & 1 & 4 \\\[0.3em] 1 & 1 & 1 \\\[0.3em] λ & -3 & 0 \end{vmatrix}
=8(3)1(λ)+4(3λ)=8(3)−1(−λ)+4(−3−λ)
=24+λ124λ=24+λ–12–4λ
=123λ=12–3λ
So for λ=4λ = 4, it is having infinitely many solutions.
Δx=214\[0.3em]011\[0.3em]μ30Δ_x= \begin{vmatrix} -2 & 1 & 4 \\\[0.3em] 0 & 1 & 1 \\\[0.3em] μ & -3 & 0 \end{vmatrix}
Δx=2(3)1(μ)+4(μ)Δ_x=−2(3)−1(−μ)+4(−μ)
Δx=63μΔ_x=−6–3μ
Δx=0Δ_x=0
For μ=2μ= –2
Distance of (4,2,12)(4,−2,−\frac 12) from 8x+y+4z+2=08x+y+4z+2=0
=3222+264+1+16=\frac {32−2−2+2}{\sqrt {64+1+16}}

=103=\frac {10}{3} units

So, the correct option is (D): 103\frac {10}{3}