Solveeit Logo

Question

Mathematics Question on Matrices and Determinants

If the system of equations
x+(2sinα)y+(2cosα)z=0x + \left( \sqrt{2} \sin \alpha \right) y + \left( \sqrt{2} \cos \alpha \right) z = 0
x+(cosα)y+(sinα)z=0x + \left( \cos \alpha \right) y + \left( \sin \alpha \right) z = 0
x+(sinα)y(cosα)z=0x + \left( \sin \alpha \right) y - \left( \cos \alpha \right) z = 0
has a non-trivial solution, then α(0,π2)\alpha \in \left( 0, \frac{\pi}{2} \right) is equal to:

A

3π4\frac{3\pi}{4}

B

7π24\frac{7\pi}{24}

C

5π24\frac{5\pi}{24}

D

11π24\frac{11\pi}{24}

Answer

5π24\frac{5\pi}{24}

Explanation

Solution

**Set up the system in matrix form: **
The system of equations can be represented in matrix form as: (12sinα2cosα 1cosαsinα 1sinαcosα)(x y z)=(0 0 0)\begin{pmatrix} 1 & \sqrt{2} \sin \alpha & \sqrt{2} \cos \alpha \\\ 1 & \cos \alpha & \sin \alpha \\\ 1 & \sin \alpha & -\cos \alpha \end{pmatrix} \begin{pmatrix} x \\\ y \\\ z \end{pmatrix} = \begin{pmatrix} 0 \\\ 0 \\\ 0 \end{pmatrix}

Condition for a Non-Trivial Solution:
For the system to have a non-trivial solution, the determinant of the matrix must be zero: det(12sinα2cosα 1cosαsinα 1sinαcosα)=0\text{det} \begin{pmatrix} 1 & \sqrt{2} \sin \alpha & \sqrt{2} \cos \alpha \\\ 1 & \cos \alpha & \sin \alpha \\\ 1 & \sin \alpha & -\cos \alpha \end{pmatrix} = 0

Calculate the Determinant:
Expanding the determinant: det=1×(cosα×(cosα)sinα×sinα)2sinα×(1×cosα1×sinα)+2cosα×(1×sinα1×cosα)\text{det} = 1 \times (\cos \alpha \times (-\cos \alpha) - \sin \alpha \times \sin \alpha) - \sqrt{2} \sin \alpha \times (1 \times -\cos \alpha - 1 \times \sin \alpha) + \sqrt{2} \cos \alpha \times (1 \times \sin \alpha - 1 \times \cos \alpha)
Simplifying this determinant leads to an equation in terms of α\alpha that must be solved for α\alpha.

Solve for α\alpha:
Solving the resulting trigonometric equation, we find that α=5π24\alpha = \frac{5\pi}{24}.
α+π8=nπ±π3\alpha + \frac{\pi}{8} = n\pi \pm \frac{\pi}{3} For n=0n = 0, x=π3π8=5π24.x = \frac{\pi}{3} - \frac{\pi}{8} = \frac{5\pi}{24}.