Solveeit Logo

Question

Question: If the system of equations x + ay + az = 0 bx + y + bz = 0 cx + cy + z = 0 where a, b and c are ...

If the system of equations

x + ay + az = 0

bx + y + bz = 0

cx + cy + z = 0

where a, b and c are non-zero and non-unity, has a non-trivial solution, then the value of a1a\frac{a}{1–a}+ b1b\frac{b}{1–b} + c1c\frac{c}{1–c} is –

A

Zero

B

1

C

– 1

D

abca2+b2+c2\frac{abc}{a^{2} + b^{2} + c^{2}}

Answer

– 1

Explanation

Solution

For non trivial solution ⇒ ∆ = 0

∆=1aab1bcc1\left| \begin{matrix} 1 & a & a \\ b & 1 & b \\ c & c & 1 \end{matrix} \right|=∆=1a0ab11bbcc11\left| \begin{matrix} 1–a & 0 & a \\ b–1 & 1–b & b \\ c & c–1 & 1 \end{matrix} \right|=0⇒n(1–a)(1–b)(1–c)× 10a1a11b1b0111c\left| \begin{matrix} 1 & 0 & \frac{a}{1–a} \\ –1 & 1 & \frac{b}{1–b} \\ 0 & –1 & \frac{1}{1–c} \end{matrix} \right| = 0⇒ 1/1–a + b/1–b + c/1–c = – 1