Solveeit Logo

Question

Mathematics Question on Matrices and Determinants

If the system of equations x+4yz=λx + 4y - z = \lambda, 7x+9y+μz=37x + 9y + \mu z = -3, 5x+y+2z=15x + y + 2z = -1 has infinitely many solutions, then (2μ+3λ)(2\mu + 3\lambda) is equal to:

A

2

B

-3

C

3

D

-2

Answer

-3

Explanation

Solution

Given the system of equations:

x+4yz=λ,7x+9y+μz=3,5x+y+2z=1,x + 4y - z = \lambda, \quad 7x + 9y + \mu z = -3, \quad 5x + y + 2z = -1,

we form the coefficient matrix: Δ=141 79μ 512.\Delta = \begin{vmatrix} 1 & 4 & -1 \\\ 7 & 9 & \mu \\\ 5 & 1 & 2 \end{vmatrix}.

For the system to have infinitely many solutions, the determinant of this matrix must be zero: Δ=19μ 1247μ 52179 51.\Delta = 1 \cdot \begin{vmatrix} 9 & \mu \\\ 1 & 2 \end{vmatrix} - 4 \cdot \begin{vmatrix} 7 & \mu \\\ 5 & 2 \end{vmatrix} - 1 \cdot \begin{vmatrix} 7 & 9 \\\ 5 & 1 \end{vmatrix}.

Calculating each term: Δ=1(18μ)4(145μ)(745).\Delta = 1 \cdot (18 - \mu) - 4 \cdot (14 - 5\mu) - (7 - 45).

Simplifying: Δ=18μ4(145μ)(38).\Delta = 18 - \mu - 4(14 - 5\mu) - (-38). Δ=18μ56+20μ+38.\Delta = 18 - \mu - 56 + 20\mu + 38. Δ=19μ+0.\Delta = 19\mu + 0.

For the determinant to be zero (infinitely many solutions): 19μ=0    μ=0.19\mu = 0 \implies \mu = 0. Substituting μ=0\mu = 0 into the augmented matrix and setting Δx=Δy=Δz=0\Delta_x = \Delta_y = \Delta_z = 0,

we find: Δx=λ41 390 112=0.\Delta_x = \begin{vmatrix} \lambda & 4 & -1 \\\ -3 & 9 & 0 \\\ -1 & 1 & 2 \end{vmatrix} = 0.

Expanding: λ90 12430 12139 11.\lambda \cdot \begin{vmatrix} 9 & 0 \\\ 1 & 2 \end{vmatrix} - 4 \cdot \begin{vmatrix} -3 & 0 \\\ -1 & 2 \end{vmatrix} - 1 \cdot \begin{vmatrix} -3 & 9 \\\ -1 & 1 \end{vmatrix}.

Calculating each term: λ(18)4(6)(12)=0.\lambda (18) - 4(-6) - (-12) = 0. Simplifying: 18λ+24+12=0.18\lambda + 24 + 12 = 0. 18λ=36    λ=1.18\lambda = -36 \implies \lambda = -1.

Finally, calculating 2μ+3λ2\mu + 3\lambda: 2μ+3λ=2(0)+3(1)=3.2\mu + 3\lambda = 2(0) + 3(-1) = -3.

Therefore: 3.-3.