Solveeit Logo

Question

Mathematics Question on Determinants

If the system of equations x+2y+3z=3 x+2 y+3 z=3 4x+3y4z=44 x+3 y-4 z=4 8x+4yλz=9+μ 8 x+4 y-\lambda z=9+\mu has infinitely many solutions, then the ordered pair (λ,μ)(\lambda, \mu) is equal to :

A

(725,215)\left(\frac{72}{5},-\frac{21}{5}\right)

B

(725,215)\left(\frac{72}{5}, \frac{21}{5}\right)

C

(725215)\left(-\frac{72}{5} \cdot-\frac{21}{5}\right)

D

(725,215)\left(-\frac{72}{5}, \frac{21}{5}\right)

Answer

(725,215)\left(\frac{72}{5},-\frac{21}{5}\right)

Explanation

Solution

The correct answer is (A) : (725,215)\left(\frac{72}{5},-\frac{21}{5}\right)
x+2y+3z=3......(i)
4x+3y−4z=4.......(ii)
8x+4y−λz=9+μ......(iii)
(i) ×4 - (ii) ⇒5y+16z=8......(iv)
(ii) ×2− (iii) ⇒2y+(λ−8)z=−1−μ......(v)
(iv) ×2− (iii) ×5⇒(32−5(λ−8))z=16−5(−1−μ)
For infinite solutions ⇒72−5λ=0⇒λ=572​
21+5μ=0⇒μ=5−21​
⇒(λ,μ)≡(572​,5−21​)