Solveeit Logo

Question

Question: If the system of equations lx<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> = 1, x<sub>1</sub> + lx<su...

If the system of equations lx1 + x2 + x3 = 1, x1 + lx2 + x3 = 1, x1 + x2 + lx3 = 1 is consistent, then l can be-

A

5

B

–2/3

C

–3

D

None of these

Answer

None of these

Explanation

Solution

Let D = λ111λ111λ\left| \begin{matrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{matrix} \right| = λ+211λ+2λ1λ+21λ\left| \begin{matrix} \lambda + 2 & 1 & 1 \\ \lambda + 2 & \lambda & 1 \\ \lambda + 2 & 1 & \lambda \end{matrix} \right|

[C1 ® C1 + C2 + C3]

= (l + 2) 1111λ111λ\left| \begin{matrix} 1 & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{matrix} \right|

= (l + 2) 1001λ1010λ1\left| \begin{matrix} 1 & 0 & 0 \\ 1 & \lambda - 1 & 0 \\ 1 & 0 & \lambda - 1 \end{matrix} \right| = (l + 2) (l – 1)2

[using C2 ® C2 – C1 and C3 ® C3 – C1]

If D = 0, then l = –2 or l = 1. But when l = 1, the system of equation becomes x1 + x2 + x3 = 1 which has infinite number of solutions. When l = – 2, by adding three equations, we obtain 0 = 3 and thus, the system of equations is inconsistent.