Question
Question: If the system of equations \(ax + y + z = 0,x + by + z = 0\) and \(x + y + cz = 0\), where \(a,b,c ...
If the system of equations ax+y+z=0,x+by+z=0 and
x+y+cz=0, where a,b,c=1 has a non-trivial solution, then the value of 1−a1+1−b1+1−c1 is
A
–1
B
0
C
1
D
None of these
Answer
1
Explanation
Solution
As the system of the equations has a non-trivial solution a111b111c=0
Applying R2→R2−R1 and R3→R3−R1
a & 1 & 1 \\ 1 - a & b - 1 & 0 \\ 1 - a & 0 & c - 1 \end{matrix} \right| = 0$$ $$\Rightarrow a(b - 1)(c - 1) - 1(1 - a)(c - 1) - 1(1 - a)(b - 1) = 0$$ $\Rightarrow$ $\frac{a}{1 - a} + \frac{1}{1 - b} + \frac{1}{1 - c} = 0$ $\Rightarrow$ $\frac{1}{1 - a} - 1 + \frac{1}{1 - b} + \frac{1}{1 - c} = 0$ $\Rightarrow$ $\frac{1}{1 - a} + \frac{1}{1 - b} + \frac{1}{1 - c} = 1$