Solveeit Logo

Question

Question: If the system of equations \(ax + y + z = 0,x + by + z = 0\) and \(x + y + cz = 0\), where \(a,b,c ...

If the system of equations ax+y+z=0,x+by+z=0ax + y + z = 0,x + by + z = 0 and

x+y+cz=0x + y + cz = 0, where a,b,c1a,b,c \neq 1 has a non-trivial solution, then the value of 11a+11b+11c\frac{1}{1 - a} + \frac{1}{1 - b} + \frac{1}{1 - c} is

A

–1

B

0

C

1

D

None of these

Answer

1

Explanation

Solution

As the system of the equations has a non-trivial solution a111b111c=0\left| \begin{matrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{matrix} \right| = 0

Applying R2R2R1R_{2} \rightarrow R_{2} - R_{1} and R3R3R1R_{3} \rightarrow R_{3} - R_{1}

a & 1 & 1 \\ 1 - a & b - 1 & 0 \\ 1 - a & 0 & c - 1 \end{matrix} \right| = 0$$ $$\Rightarrow a(b - 1)(c - 1) - 1(1 - a)(c - 1) - 1(1 - a)(b - 1) = 0$$ $\Rightarrow$ $\frac{a}{1 - a} + \frac{1}{1 - b} + \frac{1}{1 - c} = 0$ $\Rightarrow$ $\frac{1}{1 - a} - 1 + \frac{1}{1 - b} + \frac{1}{1 - c} = 0$ $\Rightarrow$ $\frac{1}{1 - a} + \frac{1}{1 - b} + \frac{1}{1 - c} = 1$