Solveeit Logo

Question

Question: If the system of equations ax + y + z = 0, x + by + z = 0 and x + y + cz = 0 (a, b, c ¹ 1) has a no...

If the system of equations ax + y + z = 0,

x + by + z = 0 and x + y + cz = 0 (a, b, c ¹ 1) has a non-trivial

solution, then the value of 11a\frac{1}{1–a} + 11b\frac{1}{1–b} + 11c\frac{1}{1–c} is –

A

–1

B

0

C

1

D

None of these

Answer

1

Explanation

Solution

Non trivial sol D = 0

Ža111b111c\left| \begin{matrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{matrix} \right| = 0

C1C1C2C2C2C3a1011bb1101cc=0\begin{matrix} C_{1} \rightarrow C_{1} - C_{2} \\ C_{2} \rightarrow C_{2} - C_{3} \end{matrix} \Rightarrow \left| \begin{matrix} a - 1 & 0 & 1 \\ 1 - b & b - 1 & 1 \\ 0 & 1 - c & c \end{matrix} \right| = 0 Ž (1 – a) (1 – b)

(1 – c) $\left| \begin{matrix}

  • 1 & 0 & \frac{1}{1 - a} \ 1 & - 1 & \frac{1}{1 - b} \ 0 & 1 & \frac{c}{1 - c} \end{matrix} \right| = 0$

Ž (1 – a) (1 – b) (1 – c) [11a(1)11b(1)+c1c]\left\lbrack \frac{1}{1 - a}(1)–\frac{1}{1 - b}( - 1) + \frac{c}{1 - c} \right\rbrack = 0

11a\frac{1}{1 - a} + 11b\frac{1}{1 - b} + 11c\frac{1}{1 - c} = 11c\frac{1}{1 - c}c1c\frac{c}{1 - c} = 1