Solveeit Logo

Question

Question: If the system of equations $3x-2y+z=0$, $λx-14y+15z=0$, $x+2y+3z=0$ have a non-trivial solution, the...

If the system of equations 3x2y+z=03x-2y+z=0, λx14y+15z=0λx-14y+15z=0, x+2y+3z=0x+2y+3z=0 have a non-trivial solution, then λ=λ=

A

29

B

-15

C

-29

D

15

Answer

29

Explanation

Solution

For a homogeneous system of linear equations to have a non-trivial solution, the determinant of its coefficient matrix must be zero. We form the coefficient matrix from the given equations:

A=(321λ1415123)A = \begin{pmatrix} 3 & -2 & 1 \\ λ & -14 & 15 \\ 1 & 2 & 3 \end{pmatrix}

Calculate the determinant:

det(A)=3141523(2)λ1513+1λ1412\det(A) = 3 \begin{vmatrix} -14 & 15 \\ 2 & 3 \end{vmatrix} - (-2) \begin{vmatrix} λ & 15 \\ 1 & 3 \end{vmatrix} + 1 \begin{vmatrix} λ & -14 \\ 1 & 2 \end{vmatrix}

det(A)=3((14)(3)(15)(2))+2((λ)(3)(15)(1))+1((λ)(2)(14)(1))\det(A) = 3 ((-14)(3) - (15)(2)) + 2 ((λ)(3) - (15)(1)) + 1 ((λ)(2) - (-14)(1))

det(A)=3(4230)+2(3λ15)+1(2λ+14)\det(A) = 3 (-42 - 30) + 2 (3λ - 15) + 1 (2λ + 14)

det(A)=3(72)+6λ30+2λ+14\det(A) = 3 (-72) + 6λ - 30 + 2λ + 14

det(A)=216+8λ16\det(A) = -216 + 8λ - 16

det(A)=8λ232\det(A) = 8λ - 232

Set det(A)=0\det(A) = 0:

8λ232=08λ - 232 = 0 8λ=2328λ = 232 λ=2328λ = \frac{232}{8} λ=29λ = 29