Question
Question: If the system of equations $3x-2y+z=0$, $λx-14y+15z=0$, $x+2y+3z=0$ have a non-trivial solution, the...
If the system of equations 3x−2y+z=0, λx−14y+15z=0, x+2y+3z=0 have a non-trivial solution, then λ=

A
29
B
-15
C
-29
D
15
Answer
29
Explanation
Solution
For a homogeneous system of linear equations to have a non-trivial solution, the determinant of its coefficient matrix must be zero. We form the coefficient matrix from the given equations:
A=3λ1−2−1421153
Calculate the determinant:
det(A)=3−142153−(−2)λ1153+1λ1−142
det(A)=3((−14)(3)−(15)(2))+2((λ)(3)−(15)(1))+1((λ)(2)−(−14)(1))
det(A)=3(−42−30)+2(3λ−15)+1(2λ+14)
det(A)=3(−72)+6λ−30+2λ+14
det(A)=−216+8λ−16
det(A)=8λ−232
Set det(A)=0:
8λ−232=0 8λ=232 λ=8232 λ=29