Solveeit Logo

Question

Mathematics Question on Quadratic Equations

If the system of equations 2x + 7y + \lambda z = 3,$$$$3x + 2y + 5z = 4,$$$$x + \mu y + 32z = -1has infinitely many solutions, then (λμ)(\lambda - \mu) is equal to ________.

Answer

For the system to have infinitely many solutions, the determinant of the coefficient matrix must be zero. We set:
D=D1=D2=D3=0D = D_1 = D_2 = D_3 = 0
Calculating D3D_3:
D3=273\324\1μ1=0D_3 = \begin{vmatrix}2 & 7 & 3 \\\3 & 2 & 4 \\\1 & \mu & -1\end{vmatrix}= 0

Expanding, we get:
224μ1734\11+332\1μ=02 \begin{vmatrix}2 & 4 \\\\\mu & -1\end{vmatrix}- 7 \begin{vmatrix}3 & 4 \\\1 & -1\end{vmatrix}+ 3 \begin{vmatrix}3 & 2 \\\1 & \mu\end{vmatrix}= 0
Solving for μ\mu, we find:
μ=39\mu = -39
Now, calculating DD with λ\lambda in place:
D=27λ\325\13932=0D = \begin{vmatrix}2 & 7 & \lambda \\\3 & 2 & 5 \\\1 & -39 & 32\end{vmatrix}= 0
Solving this determinant, we get:
λ=1\lambda = -1

Thus, λμ=1(39)=38\lambda - \mu = -1 - (-39) = 38.