Question
Mathematics Question on Matrices and Determinants
If the system of equations 11x+y+λz=−5, 2x+3y+5z=3, 8x−19y−39z=μ has infinitely many solutions, then λ4−μ is equal to:
A
49
B
45
C
47
D
51
Answer
47
Explanation
Solution
For the system to have infinitely many solutions, the determinant of the coefficient matrix must be zero. Set up the determinant D as follows:
D=11 2 813−19λ5−39=0
Expanding the determinant:
=11(3⋅(−39)−5⋅(−19))−1(2⋅(−39)−5⋅8)+λ(2⋅(−19)−3⋅8)
=11(−117+95)−1(−78−40)+λ(−38−24)
=11(−22)+118+λ(−62)=0
Solving for λ:
−242+118−62λ=0
62λ=−124⟹λ=−2
Now substitute λ=−2 and calculate μ by setting up the augmented determinant D1:
D1=−5 3 μ13−19−25−39=0
Expanding D1:
=−5(3⋅(−39)−5⋅(−19))−1(3⋅(−39)−5μ)−2(3⋅(−19)+3μ)
=−5(−117+95)+(−117+5μ)+6μ=0
−341+6μ=0⟹μ=−31
Finally, calculate λ4−μ: λ4−μ=(−2)4−(−31)=16+31=47