Solveeit Logo

Question

Mathematics Question on Matrices and Determinants

If the system of equations 11x+y+λz=5,11x + y + \lambda z = -5, 2x+3y+5z=3,2x + 3y + 5z = 3, 8x19y39z=μ8x - 19y - 39z = \mu has infinitely many solutions, then λ4μ\lambda^4 - \mu is equal to:

A

49

B

45

C

47

D

51

Answer

47

Explanation

Solution

For the system to have infinitely many solutions, the determinant of the coefficient matrix must be zero. Set up the determinant DD as follows:

D=111λ 235 81939=0D = \begin{vmatrix} 11 & 1 & \lambda \\\ 2 & 3 & 5 \\\ 8 & -19 & -39 \end{vmatrix} = 0

Expanding the determinant:

=11(3(39)5(19))1(2(39)58)+λ(2(19)38)= 11(3 \cdot (-39) - 5 \cdot (-19)) - 1(2 \cdot (-39) - 5 \cdot 8) + \lambda(2 \cdot (-19) - 3 \cdot 8)

=11(117+95)1(7840)+λ(3824)= 11(-117 + 95) - 1(-78 - 40) + \lambda(-38 - 24)

=11(22)+118+λ(62)=0= 11(-22) + 118 + \lambda(-62) = 0

Solving for λ\lambda:

242+11862λ=0-242 + 118 - 62\lambda = 0

62λ=124    λ=262\lambda = -124 \implies \lambda = -2

Now substitute λ=2\lambda = -2 and calculate μ\mu by setting up the augmented determinant D1D_1:

D1=512 335 μ1939=0D_1 = \begin{vmatrix} -5 & 1 & -2 \\\ 3 & 3 & 5 \\\ \mu & -19 & -39 \end{vmatrix} = 0

Expanding D1D_1:

=5(3(39)5(19))1(3(39)5μ)2(3(19)+3μ)= -5(3 \cdot (-39) - 5 \cdot (-19)) - 1(3 \cdot (-39) - 5\mu) - 2(3 \cdot (-19) + 3\mu)

=5(117+95)+(117+5μ)+6μ=0= -5(-117 + 95) + (-117 + 5\mu) + 6\mu = 0

341+6μ=0    μ=31-341 + 6\mu = 0 \implies \mu = -31

Finally, calculate λ4μ\lambda^4 - \mu: λ4μ=(2)4(31)=16+31=47\lambda^4 - \mu = (-2)^4 - (-31) = 16 + 31 = 47