Solveeit Logo

Question

Question: If the sum to infinite of the series \(1 + 4x + 7{x^2} + 10{x^3} + ......\) is \(\dfrac{{35}}{{16}}\...

If the sum to infinite of the series 1+4x+7x2+10x3+......1 + 4x + 7{x^2} + 10{x^3} + ...... is 3516\dfrac{{35}}{{16}} , then find x.
(Note:x<1\left| x \right| < 1 )
A.15\dfrac{1}{5}
B.15 - \dfrac{1}{5}
C.14\dfrac{1}{4}
D.13\dfrac{1}{3}

Explanation

Solution

First multiply x in the given equation and subtract the obtained equation from the given equation. On solving the series will be in G.P. so use the formula of infinite G.P. series-
S=a1r\Rightarrow {S_\infty } = \dfrac{a}{{1 - r}} where a =first term and r is common ratio and r<11. Then substitute the given value in the equation and solve for x.

Complete step-by-step answer:
Given that the sum of infinite series1+4x+7x2+10x3+......1 + 4x + 7{x^2} + 10{x^3} + ...... S{S_\infty } =3516\dfrac{{35}}{{16}}
We have to find the value of x.
Let us assume,
S=1+4x+7x2+10x3+......\Rightarrow {S_\infty } = 1 + 4x + 7{x^2} + 10{x^3} + ...... -- (i)
Now on multiplying x both sides in eq. (i) we get,
xS=x(1+4x+7x2+10x3+......)\Rightarrow x{S_\infty } = x\left( {1 + 4{x^{}} + 7{x^2} + 10{x^3} + ......} \right)
On multiplication we get,
xS=x+4x2+7x3+10x4+......\Rightarrow x{S_\infty } = x + 4{x^2} + 7{x^3} + 10{x^4} + ...... -- (ii)
Now on subtracting eq. (ii) from eq. (i), we get
SxS=(1+4x+7x2+10x3+......)(x+4x2+7x3+10x4+......)\Rightarrow {S_\infty } - x{S_\infty } = \left( {1 + 4x + 7{x^2} + 10{x^3} + ......} \right) - \left( {x + 4{x^2} + 7{x^3} + 10{x^4} + ......} \right)
Now taking S{S_\infty } common, we get,
(1x)S=(1+4x+7x2+10x3+......)(x+4x2+7x3+10x4+......)\Rightarrow \left( {1 - x} \right){S_\infty } = \left( {1 + 4x + 7{x^2} + 10{x^3} + ......} \right) - \left( {x + 4{x^2} + 7{x^3} + 10{x^4} + ......} \right) -- (iii)
On solving the RHS of the equation we get,
(1+(4xx)+(7x24x2)+(10x37x3)+......)\Rightarrow \left( {1 + \left( {4x - x} \right) + \left( {7{x^2} - 4{x^2}} \right) + \left( {10{x^3} - 7{x^3}} \right) + ......} \right) {On taking the common terms together}
On simplifying we get,
(1+3x+3x2+3x3+......)\Rightarrow \left( {1 + 3x + 3{x^2} + 3{x^3} + ......} \right)
In this series we see on observing that the first term ’a’ is3x3x and the common ratio r=x. So this series is in geometric progression and it is an infinite series so using the formula for the sum of infinite G.P. series-
S=a1r\Rightarrow {S_\infty } = \dfrac{a}{{1 - r}} where r<11
Now putting the given values we get,
1+3x1x\Rightarrow 1 + \dfrac{{3x}}{{1 - x}} for x<1\left| x \right| < 1
On substituting this value in the equation (iii), we get,
  (1x)S=1+3x1x\; \Rightarrow \left( {1 - x} \right){S_\infty } = 1 + \dfrac{{3x}}{{1 - x}} for x<1\left| x \right| < 1
On taking LCM on the right side we get,
  (1x)S=1x+3x1x=1+2x1x\; \Rightarrow \left( {1 - x} \right){S_\infty } = \dfrac{{1 - x + 3x}}{{1 - x}} = \dfrac{{1 + 2x}}{{1 - x}} for x<1\left| x \right| < 1
We know that S{S_\infty } =3516\dfrac{{35}}{{16}} then on substituting this value in the above equation we get,
(1x)3516=1+2x1x\Rightarrow \left( {1 - x} \right)\dfrac{{35}}{{16}} = \dfrac{{1 + 2x}}{{1 - x}}
On cross multiplication we get,
35(1x)2=16(1+2x)\Rightarrow 35{\left( {1 - x} \right)^2} = 16\left( {1 + 2x} \right)
We know that (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab .
On using this formula we get,
35(1+x22x)=16+32x\Rightarrow 35\left( {1 + {x^2} - 2x} \right) = 16 + 32x
On simplifying we obtain a quadratic equation,
35x2102x+19=0\Rightarrow 35{x^2} - 102x + 19 = 0
On factoring we get,
(7x19)(5x1)=0\Rightarrow \left( {7x - 19} \right)\left( {5x - 1} \right) = 0
On equating the multiplication terms to zero we get,
(7x19)=0 or (5x1)=0\Rightarrow \left( {7x - 19} \right) = 0{\text{ or }}\left( {5x - 1} \right) = 0
x=197Or x = 15\Rightarrow x = \dfrac{{19}}{7}{\text{Or x = }}\dfrac{1}{5}
Here given thatx<1\left| x \right| < 1hencex=197x = \dfrac{{19}}{7} is not possible.
Hence the correct answer is x=15x = \dfrac{1}{5} which is option D.

Note: Here the series is infinite hence the formula of infinite G.P. is used. Don’t confuse its formula with the formula of finite G.P. series which is given as-
S=a(rn1)r1\Rightarrow S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}} where a = first term, r= common ratio and n= number of terms.