Solveeit Logo

Question

Mathematics Question on Sequence and series

If the sum to 2n2n terms of the A.P. 2, 5, 8,11,...A.P. \text{ }2,\text{ }5,\text{ }8,11,... is equal to the sum to nn terms of the  57, 59, 61, 63, ... ,\text{ }57,\text{ }59,\text{ }61,\text{ }63,\text{ }...\text{ }, then nn =

A

1010

B

1111

C

1212

D

1313

Answer

1111

Explanation

Solution

Let sum of 2n terms of the AP57,59,61,63AP\,\,\,57,59,61,63
is Sn{{S}_{n}} .
\therefore Sn=n2[2×57+(n1)2]{{S}_{n}}=\frac{n}{2}[2\times 57+(n-1)2]
n2(2n+112)\frac{n}{2}(2n+112)
According to question S2n=Sn{{S}_{2n}}={{S}_{n}}
\Rightarrow n(6n+1)=n2(2n+112)n(6n+1)=\frac{n}{2}(2n+112)
\Rightarrow 12n+2=2n+11212n+2=2n+112
\Rightarrow 10n=11010n=110
\Rightarrow n=11n=11