Solveeit Logo

Question

Question: If the sum of two vectors is a unit vector, then the magnitude of their difference is...

If the sum of two vectors is a unit vector, then the magnitude of their difference is

A

2\sqrt{2}

B

3\sqrt{3}

C

13\frac{1}{\sqrt{3}}

D

1

Answer

3\sqrt{3}

Explanation

Solution

Let a=1|\mathbf{a}| = 1, b=1|\mathbf{b}| = 1 and a+b=1|\mathbf{a} + \mathbf{b}| = 1a+b2=1|\mathbf{a} + \mathbf{b}|^{2} = 1

1+1+2cosθ=11 + 1 + 2\cos\theta = 1cosθ=12\cos\theta = - \frac{1}{2}θ=120o\theta = 120^{o}

\mathbf{\therefore} ab2=1+12cosθ=3\mathbf{|a - b}\mathbf{|}^{\mathbf{2}}\mathbf{= 1 + 1 - 2}\mathbf{\cos}\mathbf{\theta}\mathbf{= 3}ab=3|\mathbf{a} - \mathbf{b}| = \sqrt{3}