Solveeit Logo

Question

Question: If the sum of two unit vectors is a unit vector, then magnitude of difference is...

If the sum of two unit vectors is a unit vector, then magnitude of difference is

A

2\sqrt { 2 }

B

3\sqrt { 3 }

C

1/21 / \sqrt { 2 }

D

5\sqrt { 5 }

Answer

3\sqrt { 3 }

Explanation

Solution

Let n^1\hat { n } _ { 1 } and n^2\hat { n } _ { 2 } are the two unit vectors, then the sum is

ns2=n12+n22+2n1n2cosθn _ { s } ^ { 2 } = n _ { 1 } ^ { 2 } + n _ { 2 } ^ { 2 } + 2 n _ { 1 } n _ { 2 } \cos \theta

=1+1+2cosθ= 1 + 1 + 2 \cos \theta

Since it is given that 1=1+1+2cosθ1 = 1 + 1 + 2 \cos \theta

or θ=120\theta = 120 ^ { \circ }

Now the difference vector is nd=n1n2n _ { d } = n _ { 1 } - n _ { 2 } or

nd2=n12+n222n1n2cosθn _ { d } ^ { 2 } = n _ { 1 } ^ { 2 } + n _ { 2 } ^ { 2 } - 2 n _ { 1 } n _ { 2 } \cos \theta =1+12cos(120)= 1 + 1 - 2 \cos \left( 120 ^ { \circ } \right)

nd=3\Rightarrow n _ { d } = \sqrt { 3 }