Solveeit Logo

Question

Question: If the sum of three terms of G.P. is 19 and product is 216, then the common ratio of the series is....

If the sum of three terms of G.P. is 19 and product is 216, then the common ratio of the series is.

A

32- \frac { 3 } { 2 }

B

32\frac { 3 } { 2 }

C

2

D

3

Answer

32\frac { 3 } { 2 }

Explanation

Solution

Let three terms of G.P. are a,ar,ar2a , a r , a r ^ { 2 }.

Then

a+ar+ar2=19a[1+r+r2]=19a + a r + a r ^ { 2 } = 19 \Rightarrow a \left[ 1 + r + r ^ { 2 } \right] = 19 …..(i)

aarar2=216a3r3=216ar=6a \cdot a r \cdot a r ^ { 2 } = 216 \Rightarrow a ^ { 3 } r ^ { 3 } = 216 \Rightarrow a r = 6 …..(ii)

Dividing (ii) by (i),

6r+6rr+6rr2=196r+6+6r=19\frac { 6 } { r } + \frac { 6 } { r } r + \frac { 6 } { r } r ^ { 2 } = 19 \Rightarrow \frac { 6 } { r } + 6 + 6 r = 19

r2136r+1=0\Rightarrow r ^ { 2 } - \frac { 13 } { 6 } r + 1 = 0. Hence r=32r = \frac { 3 } { 2 }.