Solveeit Logo

Question

Question: If the sum of three numbers of a arithmetic sequence is 15 and the sum of their squares is 83, then ...

If the sum of three numbers of a arithmetic sequence is 15 and the sum of their squares is 83, then the numbers are.

A

4, 5, 6

B

3, 5, 7

C

1, 5, 9

D

2, 5, 8

Answer

3, 5, 7

Explanation

Solution

Let three numbers are ad,a,a+da - d , a , a + d.

We get ad+a+a+d=15a - d + a + a + d = 15 \Rightarrow a=5a = 5

And (ad)2+a2+(a+d)2=83( a - d ) ^ { 2 } + a ^ { 2 } + ( a + d ) ^ { 2 } = 83

\Rightarrow a2+d22ad+a2+a2+d2+2ad=83a ^ { 2 } + d ^ { 2 } - 2 a d + a ^ { 2 } + a ^ { 2 } + d ^ { 2 } + 2 a d = 83

\Rightarrow 2(a2+d2)+a2=832 \left( a ^ { 2 } + d ^ { 2 } \right) + a ^ { 2 } = 83

Putting a=5a = 5

\Rightarrow 2(25+d2)+25=832 \left( 25 + d ^ { 2 } \right) + 25 = 83 \Rightarrow 2d2=82 d ^ { 2 } = 8 \Rightarrow d=2d = 2

Thus numbers are 3, 5, 7.

Trick : Since 3+5+7=153 + 5 + 7 = 15 and 32+52+72=833 ^ { 2 } + 5 ^ { 2 } + 7 ^ { 2 } = 83.