Solveeit Logo

Question

Question: If the sum of the series <img src="https://cdn.pureessence.tech/canvas_284.png?top_left_x=1495&top_l...

If the sum of the series is 60100, then the number of terms are.

A

100

B

200

C

150

D

250

Answer

200

Explanation

Solution

Series, 2+5+8+11+2 + 5 + 8 + 11 + \ldots \ldots

a=2,d=3a = 2 , d = 3 and let number of terms is nn then sum of

A.P. =n2{2a+(n1)d}= \frac { n } { 2 } \{ 2 a + ( n - 1 ) d \}

\Rightarrow 60100=n2{2×2+(n1)3}60100 = \frac { n } { 2 } \{ 2 \times 2 + ( n - 1 ) 3 \} \Rightarrow 120200=n(3n+1)120200 = n ( 3 n + 1 )

\Rightarrow 3n2+n120200=03 n ^ { 2 } + n - 120200 = 0 \Rightarrow (n200)(3n+601)=0( n - 200 ) ( 3 n + 601 ) = 0

Hence n=200n = 200 .