Solveeit Logo

Question

Question: If the sum of the series $(\frac{1}{2}-\frac{1}{3})+(\frac{1}{2^2}-\frac{1}{2.3}+\frac{1}{3^2})+(\fr...

If the sum of the series (1213)+(12212.3+132)+(123122.3+12.32133)+(124123.3+122.3212.33+134)+....(\frac{1}{2}-\frac{1}{3})+(\frac{1}{2^2}-\frac{1}{2.3}+\frac{1}{3^2})+(\frac{1}{2^3}-\frac{1}{2^2.3}+\frac{1}{2.3^2}-\frac{1}{3^3})+(\frac{1}{2^4}-\frac{1}{2^3.3}+\frac{1}{2^2.3^2}-\frac{1}{2.3^3}+\frac{1}{3^4})+.... is αβ\frac{\alpha}{\beta}, where α\alpha and β\beta are co-prime, then α+3β\alpha + 3\beta is equal to....

Answer

7

Explanation

Solution

Let the given series be denoted by SS. The series is S=(1213)+(12212.3+132)+(123122.3+12.32133)+(124123.3+122.3212.33+134)+....S = (\frac{1}{2}-\frac{1}{3})+(\frac{1}{2^2}-\frac{1}{2.3}+\frac{1}{3^2})+(\frac{1}{2^3}-\frac{1}{2^2.3}+\frac{1}{2.3^2}-\frac{1}{3^3})+(\frac{1}{2^4}-\frac{1}{2^3.3}+\frac{1}{2^2.3^2}-\frac{1}{2.3^3}+\frac{1}{3^4})+....

Let a=12a = \frac{1}{2} and b=13b = \frac{1}{3}. The terms in the series are: First term: T1=abT_1 = a - b Second term: T2=a2ab+b2T_2 = a^2 - ab + b^2 Third term: T3=a3a2b+ab2b3T_3 = a^3 - a^2b + ab^2 - b^3 Fourth term: T4=a4a3b+a2b2ab3+b4T_4 = a^4 - a^3b + a^2b^2 - ab^3 + b^4 The nn-th term of the series is Tn=anan1b+an2b2+(1)nbnT_n = a^n - a^{n-1}b + a^{n-2}b^2 - \dots + (-1)^n b^n.

This is a geometric series with first term ana^n, common ratio b/a-b/a, and n+1n+1 terms. The sum of this geometric series is given by the formula Sum=First term×1(common ratio)number of terms1common ratio\text{Sum} = \text{First term} \times \frac{1 - (\text{common ratio})^{\text{number of terms}}}{1 - \text{common ratio}}. Tn=an1(b/a)n+11(b/a)=an1(1)n+1(b/a)n+11+b/a=an1(1)n+1bn+1/an+1(a+b)/aT_n = a^n \frac{1 - (-b/a)^{n+1}}{1 - (-b/a)} = a^n \frac{1 - (-1)^{n+1} (b/a)^{n+1}}{1 + b/a} = a^n \frac{1 - (-1)^{n+1} b^{n+1}/a^{n+1}}{(a+b)/a} Tn=an+1a+b(1(1)n+1bn+1/an+1)=an+1(1)n+1bn+1a+bT_n = \frac{a^{n+1}}{a+b} (1 - (-1)^{n+1} b^{n+1}/a^{n+1}) = \frac{a^{n+1} - (-1)^{n+1} b^{n+1}}{a+b}.

We need to find the sum of the series S=n=1Tn=n=1an+1(1)n+1bn+1a+bS = \sum_{n=1}^{\infty} T_n = \sum_{n=1}^{\infty} \frac{a^{n+1} - (-1)^{n+1} b^{n+1}}{a+b}. S=1a+bn=1(an+1(1)n+1bn+1)S = \frac{1}{a+b} \sum_{n=1}^{\infty} (a^{n+1} - (-1)^{n+1} b^{n+1}). S=1a+b(n=1an+1n=1(1)n+1bn+1)S = \frac{1}{a+b} \left( \sum_{n=1}^{\infty} a^{n+1} - \sum_{n=1}^{\infty} (-1)^{n+1} b^{n+1} \right).

Let's evaluate the first infinite sum n=1an+1\sum_{n=1}^{\infty} a^{n+1}. This is a2+a3+a4+a^2 + a^3 + a^4 + \dots. This is an infinite geometric series with first term A=a2A = a^2 and common ratio r=ar = a. Since a=12a = \frac{1}{2}, a<1|a| < 1, the sum converges to A1r=a21a\frac{A}{1-r} = \frac{a^2}{1-a}. n=1an+1=(1/2)211/2=1/41/2=14×2=12\sum_{n=1}^{\infty} a^{n+1} = \frac{(1/2)^2}{1 - 1/2} = \frac{1/4}{1/2} = \frac{1}{4} \times 2 = \frac{1}{2}.

Let's evaluate the second infinite sum n=1(1)n+1bn+1\sum_{n=1}^{\infty} (-1)^{n+1} b^{n+1}. This is (1)2b2+(1)3b3+(1)4b4+=b2b3+b4(-1)^2 b^2 + (-1)^3 b^3 + (-1)^4 b^4 + \dots = b^2 - b^3 + b^4 - \dots. This is an infinite geometric series with first term A=b2A = b^2 and common ratio r=br = -b. Since b=13b = \frac{1}{3}, b=1/3<1|-b| = |-1/3| < 1, the sum converges to A1r=b21(b)=b21+b\frac{A}{1-r} = \frac{b^2}{1 - (-b)} = \frac{b^2}{1+b}. n=1(1)n+1bn+1=(1/3)21+1/3=1/94/3=19×34=336=112\sum_{n=1}^{\infty} (-1)^{n+1} b^{n+1} = \frac{(1/3)^2}{1 + 1/3} = \frac{1/9}{4/3} = \frac{1}{9} \times \frac{3}{4} = \frac{3}{36} = \frac{1}{12}.

Now substitute these values back into the expression for SS. a+b=12+13=3+26=56a+b = \frac{1}{2} + \frac{1}{3} = \frac{3+2}{6} = \frac{5}{6}. S=15/6(12112)S = \frac{1}{5/6} \left( \frac{1}{2} - \frac{1}{12} \right). S=65(612112)=65(512)=6×55×12=3060=12S = \frac{6}{5} \left( \frac{6}{12} - \frac{1}{12} \right) = \frac{6}{5} \left( \frac{5}{12} \right) = \frac{6 \times 5}{5 \times 12} = \frac{30}{60} = \frac{1}{2}.

The sum of the series is S=12S = \frac{1}{2}. We are given that the sum is αβ\frac{\alpha}{\beta}, where α\alpha and β\beta are co-prime. Comparing S=12S = \frac{1}{2} with αβ\frac{\alpha}{\beta}, we have α=1\alpha = 1 and β=2\beta = 2. α=1\alpha = 1 and β=2\beta = 2 are co-prime (their greatest common divisor is 1).

We need to find the value of α+3β\alpha + 3\beta. α+3β=1+3(2)=1+6=7\alpha + 3\beta = 1 + 3(2) = 1 + 6 = 7.