Question
Mathematics Question on Sequences and Series
If the sum of the series 1⋅(1+d)1+(1+d)(1+2d)1+⋯+(1+9d)(1+10d)1 is equal to 5, then 50d is equal to:
20
5
15
10
5
Solution
Step 1: General term of the series
The general term of the given series is: Tn=(1+(n−1)d)(1+nd)1.
Using partial fraction decomposition: (1+(n−1)d)(1+nd)1=1+(n−1)dA+1+ndB.
Simplify: (1+(n−1)d)(1+nd)1=(1+(n−1)d)(1+nd)A(1+nd)+B(1+(n−1)d).
Expanding numerators: 1=A(1+nd)+B(1+(n−1)d).
Equating numerators: 1=A+And+B+Bnd−Bd.
Combine terms: 1=(A+B)+(Ad+Bd)n−Bd.
Equating coefficients:
1. A+B=0,
2. Ad+Bd=0,
3. −Bd=1.
From A+B=0: B=−A. Substitute B=−A into −Bd=1: −(−A)d=1⟹A=d1. Thus, B=−d1.
The partial fraction decomposition becomes: (1+(n−1)d)(1+nd)1=d1[1+(n−1)d1−1+nd1].
Step 2: Simplify the series
The series becomes: ∑n=110(1+(n−1)d)(1+nd)1=d1[1−1+10d1].
Simplify: Sum=d1×1+10d(1+10d)−1.
Combine terms: Sum=d1×1+10d10d.
Step 3: Solve for d
Given that the sum of the series is 5: 1+10d10=5.
Simplify: 1+10d=2⟹10d=1⟹d=101.
Step 4: Compute 50d
50d=50×101=5.
Final Answer is Option (2).