Solveeit Logo

Question

Mathematics Question on Sequences and Series

If the sum of the series 11(1+d)+1(1+d)(1+2d)++1(1+9d)(1+10d)\frac{1}{1 \cdot (1 + d)} + \frac{1}{(1 + d)(1 + 2d)} + \cdots + \frac{1}{(1 + 9d)(1 + 10d)} is equal to 5, then 50d50d is equal to:

A

20

B

5

C

15

D

10

Answer

5

Explanation

Solution

Step 1: General term of the series
The general term of the given series is: Tn=1(1+(n1)d)(1+nd).T_n = \frac{1}{(1 + (n-1)d)(1 + nd)}.

Using partial fraction decomposition: 1(1+(n1)d)(1+nd)=A1+(n1)d+B1+nd.\frac{1}{(1 + (n-1)d)(1 + nd)} = \frac{A}{1 + (n-1)d} + \frac{B}{1 + nd}.

Simplify: 1(1+(n1)d)(1+nd)=A(1+nd)+B(1+(n1)d)(1+(n1)d)(1+nd).\frac{1}{(1 + (n-1)d)(1 + nd)} = \frac{A(1 + nd) + B(1 + (n-1)d)}{(1 + (n-1)d)(1 + nd)}.

Expanding numerators: 1=A(1+nd)+B(1+(n1)d).1 = A(1 + nd) + B(1 + (n-1)d).

Equating numerators: 1=A+And+B+BndBd.1 = A + And + B + Bnd - Bd.

Combine terms: 1=(A+B)+(Ad+Bd)nBd.1 = (A + B) + (Ad + Bd)n - Bd.

Equating coefficients:
1. A+B=0A + B = 0,
2. Ad+Bd=0Ad + Bd = 0,
3. Bd=1-Bd = 1.
From A+B=0A + B = 0: B=A.B = -A. Substitute B=AB = -A into Bd=1-Bd = 1: (A)d=1    A=1d.-(-A)d = 1 \quad \implies \quad A = \frac{1}{d}. Thus, B=1dB = -\frac{1}{d}.

The partial fraction decomposition becomes: 1(1+(n1)d)(1+nd)=1d[11+(n1)d11+nd].\frac{1}{(1 + (n-1)d)(1 + nd)} = \frac{1}{d} \left[ \frac{1}{1 + (n-1)d} - \frac{1}{1 + nd} \right].

Step 2: Simplify the series
The series becomes: n=1101(1+(n1)d)(1+nd)=1d[111+10d].\sum_{n=1}^{10} \frac{1}{(1 + (n-1)d)(1 + nd)} = \frac{1}{d} \left[ 1 - \frac{1}{1 + 10d} \right].

Simplify: Sum=1d×(1+10d)11+10d.\text{Sum} = \frac{1}{d} \times \frac{(1 + 10d) - 1}{1 + 10d}.

Combine terms: Sum=1d×10d1+10d.\text{Sum} = \frac{1}{d} \times \frac{10d}{1 + 10d}.

Step 3: Solve for dd
Given that the sum of the series is 5: 101+10d=5.\frac{10}{1 + 10d} = 5.

Simplify: 1+10d=2    10d=1    d=110.1 + 10d = 2 \quad \implies \quad 10d = 1 \quad \implies \quad d = \frac{1}{10}.

Step 4: Compute 50d50d
50d=50×110=5.50d = 50 \times \frac{1}{10} = 5.

Final Answer is Option (2).