Solveeit Logo

Question

Mathematics Question on Sequence and series

If the sum of the series 20+1935+1915+1845+20+19 \frac{3}{5}+19 \frac{1}{5}+18 \frac{4}{5}+\ldots upto nthn^ {th } term is 488488 and the nthn ^ {th } term is negative, then :

A

nthn^ {th } term is 425-4 \frac{2}{5}

B

n=41n= 41

C

nthn^ {th } term is 4-4

D

n=60n =60

Answer

nthn^ {th } term is 4-4

Explanation

Solution

S=1005+985+965+945+nS =\frac{100}{5}+\frac{98}{5}+\frac{96}{5}+\frac{94}{5}+\ldots n
Sn=n2(2×1005+(n1)(25))=188S _{ n }=\frac{ n }{2}\left(2 \times \frac{100}{5}+( n -1)\left(-\frac{2}{5}\right)\right)=188
n(100n+1)=488×5n (100- n +1)=488 \times 5
n2101n+488×5=0n ^{2}-101 n +488 \times 5=0
n=61,40n =61,40
Tn=a+(n1)d=100525×60T _{ n }= a +( n -1) d =\frac{100}{5}-\frac{2}{5} \times 60
=2024=4=20-24=-4